Optimized light-matter interaction and defect hole placement in photonic crystal cavity sensors.
نویسندگان
چکیده
Photonic crystal slab cavities were investigated for increased light-matter interaction based on selective placement of sublattice hole sized defect holes inside L3 cavities. A multiple-hole defect (MHD) consisting of three defect holes placed in the regions of highest cavity mode field intensity were demonstrated through finite-difference time-domain simulations and experiments to exhibit the strongest light-matter interaction without introducing significant scattering losses. Compared to an L3 cavity without defect holes, these strategically designed three-hole MHD cavities presented higher quality factor and more than double the resonance wavelength shift upon exposure to a thin oxide and two small chemical molecules.
منابع مشابه
Photonic crystal defect tuning for optimized light-matter interaction
Photonic crystal microcavities with multi-hole defects were simulated using finite difference time domain (FDTD) analysis. Subwavelength, multi-hole defects (MHD) offer a significant increase in defect surface area without compromising the quality factor of the photonic crystal. Calculations of the increase in surface area compared to a traditional, single hole defect are performed for MHD stru...
متن کاملNumerical Calculation of Resonant Frequencies and Modes of a Three-Atom Photonic Molecule and a Photonic Crystal in an External Cavity
In the present paper, resonant frequencies and modes of a three-atom photonic molecule and a photonic crystal placed within a cavity are numerically calculated. First, governing formulation in transverse electric field mode (TE) is obtained using Maxwell equations. Then, an algorithm based on a finite difference scheme and matrix algebra is presented. The algorithm is then implemented in a comp...
متن کاملDesign of photonic crystal microcavities for cavity QED.
We discuss the optimization of optical microcavity designs based on two-dimensional photonic crystals for the purpose of strong coupling between the cavity field and a single neutral atom trapped within a hole. We present numerical predictions for the quality factors and mode volumes of localized defect modes as a function of geometric parameters, and discuss some experimental challenges relate...
متن کاملTunable Defect Mode in One-Dimensional Ternary Nanophotonic Crystal with Mirror Symmetry
In this paper, the properties of the defect mode in the photonic band gap ofone-dimensional ternary photonic crystals containing high temperature superconductorlayer (SPCs) have been theoretically investigated. We considered the quasi-periodiclayered structures by choosing two order of ternary Thue-Morse structures with mirrorsymmetry. We investigated the transmission spectra of these structure...
متن کاملOptimization of a single defect photonic crystal laser cavity
Using nonlinear programing and the geometry projection method, the quality factor of the monopole mode of a single defect photonic crystal laser cavity is improved from 38 000 to 87 000. Beginning with a design that considers only round air holes shifted away from the cavity, the radius of the nearest neighbor and of the surrounding air holes are optimized while satisfying a constraint on the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 37 14 شماره
صفحات -
تاریخ انتشار 2012