Alternative Oxidase Dependent Respiration Leads to an Increased Mitochondrial Content in Two Long-Lived Mutants of the Ageing Model Podospora anserina

نویسندگان

  • Christian Q. Scheckhuber
  • Koen Houthoofd
  • Andrea C. Weil
  • Alexandra Werner
  • Annemie De Vreese
  • Jacques R. Vanfleteren
  • Heinz D. Osiewacz
چکیده

The retrograde response constitutes an important signalling pathway from mitochondria to the nucleus which induces several genes to allow compensation of mitochondrial impairments. In the filamentous ascomycete Podospora anserina, an example for such a response is the induction of a nuclear-encoded and iron-dependent alternative oxidase (AOX) occurring when cytochrome-c oxidase (COX) dependent respiration is affected. Several long-lived mutants are known which predominantly or exclusively respire via AOX. Here we show that two AOX-utilising mutants, grisea and PaCox17::ble, are able to compensate partially for lowered OXPHOS efficiency resulting from AOX-dependent respiration by increasing mitochondrial content. At the physiological level this is demonstrated by an elevated oxygen consumption and increased heat production. However, in the two mutants, ATP levels do not reach WT levels. Interestingly, mutant PaCox17::ble is characterized by a highly increased release of the reactive oxygen species (ROS) hydrogen peroxide. Both grisea and PaCox17::ble contain elevated levels of mitochondrial proteins involved in quality control, i. e. LON protease and the molecular chaperone HSP60. Taken together, our work demonstrates that AOX-dependent respiration in two mutants of the ageing model P. anserina is linked to a novel mechanism involved in the retrograde response pathway, mitochondrial biogenesis, which might also play an important role for cellular maintenance in other organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Age-Related Cellular Copper Dynamics in the Fungal Ageing Model Podospora anserina and in Ageing Human Fibroblasts

In previous investigations an impact of cellular copper homeostasis on ageing of the ascomycete Podospora anserina has been demonstrated. Here we provide new data indicating that mitochondria play a major role in this process. Determination of copper in the cytosolic fraction using total reflection X-ray fluorescence spectroscopy analysis and eGfp reporter gene studies indicate an age-related i...

متن کامل

Autophagy compensates impaired energy metabolism in CLPXP‐deficient Podospora anserina strains and extends healthspan

The degradation of nonfunctional mitochondrial proteins is of fundamental relevance for maintenance of cellular homeostasis. The heteromeric CLPXP protein complex in the mitochondrial matrix is part of this process. In the fungal aging model Podospora anserina, ablation of CLPXP leads to an increase in healthy lifespan. Here, we report that this counterintuitive increase depends on a functional...

متن کامل

Mutations in two zinc-cluster proteins activate alternative respiratory and gluconeogenic pathways and restore senescence in long-lived respiratory mutants of Podospora anserina.

In Podospora anserina, inactivation of the respiratory chain results in a spectacular life-span extension. This inactivation is accompanied by the induction of the alternative oxidase. Although the functional value of this response is evident, the mechanism behind it is far from understood. By screening suppressors able to reduce the life-span extension of cytochrome-deficient mutants, we ident...

متن کامل

Stress-dependent opposing roles for mitophagy in aging of the ascomycete Podospora anserina

Mitochondrial dysfunction is causatively linked to organismal aging and the development of degenerative diseases. Here we describe stress-dependent opposing roles of mitophagy, the selective autophagic degradation of mitochondria, in aging and life-span control. We report that the ablation of the mitochondrial superoxide dismutase which is involved in reactive oxygen species (ROS) balancing, do...

متن کامل

Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span.

A global depletion of cellular copper as the result of a deficiency in high-affinity copper uptake was previously shown to affect the phenotype and life span of the filamentous fungus Podospora anserina. We report here the construction of a strain in which the delivery of copper to complex IV of the mitochondrial respiratory chain is affected. This strain, PaCox17::ble, is a PaCox17-null mutant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011