Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a "stay-green" phenotype and improves stress tolerance under moderate drought conditions.
نویسندگان
چکیده
The Arabidopsis gene GF14 lambda that encodes a 14-3-3 protein was introduced into cotton plants to explore the physiological roles that GF14 lambda might play in plants. The expression level of GF14 lambda under the control of the cauliflower mosaic virus 35S promoter varied in transgenic cotton plants, and lines that expressed GF14 lambda demonstrated a "stay-green" phenotype and improved water-stress tolerance. These lines wilted less and maintained higher photosynthesis than segregated non-transgenic control plants under water-deficit conditions. Stomatal conductance appears to be the major factor for the observed higher photosynthetic rates under water-deficit conditions. The stomatal aperture of transgenic plants might be regulated by GF14 lambda through some transporters such as H(+)-ATPase whose activities are controlled by their interaction with 14-3-3 proteins. However, since 14-3-3 proteins interact with numerous proteins in plant cells, many metabolic processes could be affected by the GF14 lambda overexpression. Whatever the mechanisms, the traits observed in the GF14 lambda-expressing cotton plants are beneficial to crops under certain water-deficit conditions.
منابع مشابه
Evaluation of changes in the water relations, osmotic adjustment and stay- green of different genotypes of sorghum under post-flowering drought stress
To investigate the effects of drought stress on the water stress, osmotic adjustment and stay green of sorghum genotypes and their relationship with grain yield, a split-plot on randomized complete block design with three replications was conducted at the experimental field of Seed and Plant Improvement Institute, Karaj, Iran in 2015. The main factor was three treatments: control (irrigation af...
متن کاملExpression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field.
Drought and salinity are two major limiting factors in crop productivity. One way to reduce crop loss caused by drought and salinity is to increase the solute concentration in the vacuoles of plant cells. The accumulation of sodium ions inside the vacuoles provides a 2-fold advantage: (i) reducing the toxic levels of sodium in cytosol; and (ii) increasing the vacuolar osmotic potential with the...
متن کاملOverexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and Substantially Improves Fiber Yields in the Field under Reduced Irrigation and Rainfed Conditions
The Arabidopsis SUMO E3 ligase gene AtSIZ1 plays important roles in plant response to abiotic stresses as loss of function in AtSIZ1 leads to increased sensitivity to drought, heat and salt stresses. Overexpression of the AtSIZ1 rice homolog, OsSIZ1, leads to increased heat and drought tolerance in bentgrass, suggesting that the function of the E3 ligase SIZ1 is highly conserved in plants and i...
متن کاملExpression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions.
The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabidopsis may result in a higher proton electrochemical gradient, which facilitates enhanced sequester...
متن کاملCreating drought- and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene.
Increased expression of an Arabidopsis vacuolar pyrophosphatase gene, AVP1, leads to increased drought and salt tolerance in transgenic plants, which has been demonstrated in laboratory and field conditions. The molecular mechanism of AVP1-mediated drought resistance is likely due to increased proton pump activity of the vacuolar pyrophosphatase, which generates a higher proton electrochemical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 45 8 شماره
صفحات -
تاریخ انتشار 2004