Transmembrane Protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis.

نویسندگان

  • Chao Li
  • Jin Wei
  • Ying Li
  • Xiao He
  • Qian Zhou
  • Jie Yan
  • Jing Zhang
  • Ying Liu
  • Yu Liu
  • Hong-Bing Shu
چکیده

Endoplasmic reticulum (ER) stress caused by excessive aggregation of misfolded proteins induces apoptosis. Although ER stress-induced apoptosis has been implicated in many diseases, the detailed mechanisms are not well understood. Here, we identified human transmembrane protein 214 (TMEM214) as a critical mediator of ER stress-induced apoptosis. Overexpression of TMEM214 induced apoptosis, whereas knockdown of TMEM214 inhibited ER stress-induced apoptosis. TMEM214 was localized on the outer membrane of the ER and constitutively associated with procaspase 4, which was also critical for ER stress-induced apoptosis. TMEM214-induced apoptosis was abolished by a dominant negative mutant of procaspase 4, whereas caspase 4-induced apoptosis was inhibited by knockdown of TMEM214. Furthermore, knockdown of TMEM214 inhibited the activation and cleavage of procaspase 4 by impairing its recruitment to the ER. Our findings suggest that TMEM214 is essential for ER stress-induced apoptosis by acting as an anchor for recruitment of procaspase 4 to the ER and its subsequent activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL.

Infantile neuronal ceroid lipofuscinosis (INCL), a neurodegenerative storage disorder of childhood, is caused by mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. PPT1 cleaves thioester linkages in S-acylated (palmitoylated) proteins and its mutation causes abnormal intracellular accumulation of fatty-acylated proteins and peptides leading to INCL pathogenesis. Although apoptosis i...

متن کامل

Glycogen synthase kinase-3beta mediates endoplasmic reticulum stress-induced lysosomal apoptosis in leukemia.

Glycogen synthase kinase (GSK)-3beta may modulate endoplasmic reticulum (ER) stress-induced apoptosis; however, the mechanism remains unclear. Our data showed that human monocytic leukemia/lymphoma U937 and acute myeloid leukemia HL-60, but not chronic myeloid leukemia K562, cells were susceptible to apoptosis induced by ER stressor tunicamycin, a protein glycosylation inhibitor. Tunicamycin ca...

متن کامل

Inhibition of MEK sensitizes human melanoma cells to endoplasmic reticulum stress-induced apoptosis.

Past studies have shown that activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK is a common cause for resistance of melanoma cells to death receptor-mediated or mitochondria-mediated apoptosis. We report in this study that inhibition of the MEK/ERK pathway also sensitizes melanoma cells to endoplasmic reticulum (ER) stress-induced apoptos...

متن کامل

Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells.

The present study investigated the function of caspase-4 in endoplasmic reticulum (ER) stress-induced apoptosis in human neuronal cell line SH-SY5Y. Tunicamycin, which is known to induce ER stress, activated both caspase-9 and caspase-4, and the activation of caspase-4 preceded that of caspase-9. The caspase-4 inhibitor LEVD-CHO suppressed both the apoptosis and caspase-9 activation. In additio...

متن کامل

Endoplasmic Reticulum Stress-Mediated Activation of p38 MAPK, Caspase-2 and Caspase-8 Leads to Abrin-Induced Apoptosis

Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic ini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 24  شماره 

صفحات  -

تاریخ انتشار 2013