Discrete Maximum Principle and Adequate Discretizations of Linear Parabolic Problems

نویسندگان

  • István Faragó
  • Róbert Horváth
چکیده

In this paper, we analyze the connections between the different qualitative properties of numerical solutions of linear parabolic problems with Dirichlet-type boundary condition. First we formulate the qualitative properties for the differential equations and shad light on their relations. Then we show how the well-known discretization schemes can be written in the form of a one-step iterative process. We give necessary and sufficient conditions of the main qualitative properties of these iterations. We apply the results to the finite difference and Galerkin finite element solutions of linear parabolic problems. In our main result we show that the nonnegativity preservation property is equivalent to the maximum-minimum principle and they imply the maximum norm contractivity. In one, two and three dimensions, we list sufficient a priori conditions that ensure the required qualitative properties. Finally, we demonstrate the above results on numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Norm A Posteriori Error Estimation for Parabolic Problems Using Elliptic Reconstructions

A semilinear second-order parabolic equation is considered in a regular and a singularly perturbed regime. For this equation, we give computable a posteriori error estimates in the maximum norm. Semidiscrete and fully discrete versions of the backward Euler, Crank–Nicolson, and discontinuous Galerkin dG(r) methods are addressed. For their full discretizations, we employ elliptic reconstructions...

متن کامل

Maximum norm stability of difference schemes for parabolic equations on overset nonmatching space-time grids

In this paper, theoretical results are described on the maximum norm stability and accuracy of finite difference discretizations of parabolic equations on overset nonmatching space-time grids. We consider parabolic equations containing a linear reaction term on a space-time domain Ω× [0, T ] which is decomposed into an overlapping collection of cylindrical subregions of the form Ωl ×[0, T ], fo...

متن کامل

Stability of Petrov-Galerkin Discretizations: Application to the Space-Time Weak Formulation for Parabolic Evolution Problems

This paper is concerned with the stability of Petrov-Galerkin discretizations with application to parabolic evolution problems in space-time weak form. We will prove that the discrete inf-sup condition for an a priori fixed Petrov-Galerkin discretization is satisfied uniformly under standard approximation and smoothness conditions without any further coupling between the discrete trialand test ...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Review of Reliable Numerical Models for Three-Dimensional Linear Parabolic Problems

The preservation of characteristic qualitative properties of different phenomena is a more and more important requirement in the construction of reliable numerical models. For phenomena that can be mathematically described by linear partial differential equations of parabolic type (such as the heat conduction, the diffusion, the pricing of options etc), the most important qualitative properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2006