Understanding and Improving Morphological Learning in the Neural Machine Translation Decoder
نویسندگان
چکیده
End-to-end training makes the neural machine translation (NMT) architecture simpler, yet elegant compared to traditional statistical machine translation (SMT). However, little is known about linguistic patterns of morphology, syntax and semantics learned during the training of NMT systems, and more importantly, which parts of the architecture are responsible for learning each of these phenomena. In this paper we i) analyze how much morphology an NMT decoder learns, and ii) investigate whether injecting target morphology into the decoder helps it produce better translations. To this end we present three methods: i) joint generation, ii) joint-data learning, and iii) multi-task learning. Our results show that explicit morphological information helps the decoder learn target language morphology and improves the translation quality by 0.2–0.6 BLEU points.
منابع مشابه
A Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملExtending hybrid word-character neural machine translation with multi-task learning of morphological analysis
This article describes the Aalto University entry to the English-to-Finnish news translation shared task in WMT 2017. Our system is an open vocabulary neural machine translation (NMT) system, adapted to the needs of a morphologically complex target language. The main contributions of this paper are 1) implicitly incorporating morphological information to NMT through multi-task learning, 2) addi...
متن کاملImproving Neural Text Normalization with Data Augmentation at Character- and Morphological Levels
In this study, we investigated the effectiveness of augmented data for encoderdecoder-based neural normalization models. Attention based encoder-decoder models are greatly effective in generating many natural languages. In general, we have to prepare for a large amount of training data to train an encoderdecoder model. Unlike machine translation, there are few training data for textnormalizatio...
متن کاملNeural Sequence-to-sequence Learning of Internal Word Structure
Learning internal word structure has recently been recognized as an important step in various multilingual processing tasks and in theoretical language comparison. In this paper, we present a neural encoder-decoder model for learning canonical morphological segmentation. Our model combines character-level sequence-to-sequence transformation with a language model over canonical segments. We obta...
متن کاملNeural Machine Translation by Jointly Learning to Align and Translate
Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder–decoders and encode a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017