New Algorithms for Two-Label Point Labeling
نویسندگان
چکیده
Given a label shape L and a set of n points in the plane, the 2-label point-labeling problem consists of placing 2n non-intersecting translated copies of L of maximum size such that each point touches two unique copies—its labels. In this paper we give new and simple approximation algorithms for L an axis-parallel square or a circle. For squares we improve the best previously known approximation factor from
منابع مشابه
Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps
In this paper, we present boundary labeling, a new approach for labeling point sets with large labels. We first place disjoint labels around an axis-parallel rectangle that contains the points. Then we connect each label to its point such that no two connections intersect. Such an approach is common e.g. in technical drawings and medical atlases, but so far the problem has not been studied in t...
متن کاملMulti-stack Boundary Labeling Problems
The boundary labeling problem was recently introduced in [5] as a response to the problem of labeling dense point sets with large labels. In boundary labeling, we are given a rectangle R which encloses a set of n sites. Each site is associated with an axis-parallel rectangular label. The main task is to place the labels in distinct positions on the boundary of R, so that they do not overlap, an...
متن کاملTotally magic cordial labeling of some graphs
A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...
متن کاملLabel updating to avoid point-shaped obstacles in fixed model
In this paper, we present efficient algorithms for updating the labeling of a set of n points after the presence of a random obstacle that appears on the map repeatedly. We update the labeling so that the given obstacle does not appear in any of the labels, the new labeling is valid, and the labels are as large as possible (called the optimal labeling). Each point is assumed to have an axis-par...
متن کامل$4$-Total prime cordial labeling of some cycle related graphs
Let $G$ be a $(p,q)$ graph. Let $f:V(G)to{1,2, ldots, k}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of $G$ if $left|t_{f}(i)-t_{f}(j)right|leq 1$, $i,j in {1,2, cdots,k}$ where $t_{f}(x)$ denotes the total number of vertices and the edges labelled with $x$. A graph with a $k$-total prime cordi...
متن کامل