BIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities

نویسندگان

  • Toshinari Maeda
  • Viviana Sanchez-Torres
  • Thomas K. Wood
چکیده

In the past, it has been difficult to discriminate between hydrogen synthesis and uptake for the three active hydrogenases in Escherichia coli (hydrogenase 1, 2, and 3); however, by combining isogenic deletion mutations from the Keio collection, we were able to see the role of hydrogenase 3. In a cell that lacks hydrogen uptake via hydrogenase 1 (hyaB) and via hydrogenase 2 (hybC), inactivation of hydrogenase 3 (hycE) decreased hydrogen uptake. Similarly, inactivation of the formate hydrogen lyase complex, which produces hydrogen from formate (fhlA) in the hyaB hybC background, also decreased hydrogen uptake; hence, hydrogenase 3 has significant hydrogen uptake activity. Moreover, hydrogen uptake could be restored in the hyaB hybC hycE and hyaB hybC fhlA mutants by expressing hycE and fhlA, respectively, from a plasmid. The hydrogen uptake results were corroborated using two independent methods (both filter plate assays and a gas-chromatography-based hydrogen uptake assay). A 30-fold increase in the forward reaction, hydrogen formation by hydrogenase 3, was also detected for the strain containing active hydrogenase 3 activity but no hydrogenase 1 or 2 activity relative to the strain lacking all three hydrogenases. These results indicate clearly that hydrogenase 3 is a reversible hydrogenase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803

BACKGROUND Molecular hydrogen is an environmentally-clean fuel and the reversible (bi-directional) hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 as well as the native Escherichia coli hydrogenase 3 hold great promise for hydrogen generation. These enzymes perform the simple reaction 2H+ + 2e- <--> H2 (g). RESULTS Hydrogen yields were enhanced up to 41-fold by cloning the bidire...

متن کامل

Metabolic Deficiences Revealed in the Biotechnologically Important Model Bacterium Escherichia coli BL21(DE3)

The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybden...

متن کامل

Delivery of Iron-Sulfur Clusters to the Hydrogen-Oxidizing [NiFe]-Hydrogenases in Escherichia coli Requires the A-Type Carrier Proteins ErpA and IscA

During anaerobic growth Escherichia coli synthesizes two membrane-associated hydrogen-oxidizing [NiFe]-hydrogenases, termed hydrogenase 1 and hydrogenase 2. Each enzyme comprises a catalytic subunit containing the [NiFe] cofactor, an electron-transferring small subunit with a particular complement of [Fe-S] (iron-sulfur) clusters and a membrane-anchor subunit. How the [Fe-S] clusters are delive...

متن کامل

Recombinant Sox Enzymes from Paracoccus pantotrophus Degrade Hydrogen Sulfide, a Major Component of Oral Malodor

Hydrogen sulfide (H2S) is emitted from industrial activities, and several chemotrophs possessing Sox enzymes are used for its removal. Oral malodor is a common issue in the dental field and major malodorous components are volatile sulfur compounds (VSCs), including H2S and methyl mercaptan. Paracoccus pantotrophus is an aerobic, neutrophilic facultatively autotrophic bacterium that possesses su...

متن کامل

Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system.

Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007