Irp9, encoded by the high-pathogenicity island of Yersinia enterocolitica, is able to convert chorismate into salicylate, the precursor of the siderophore yersiniabactin.
نویسندگان
چکیده
The Irp9 protein of Yersinia enterocolitica participates in the synthesis of salicylate, the precursor of the siderophore yersiniabactin. In Pseudomonas species, salicylate synthesis is mediated by two enzymes: isochorismate synthase and isochorismate pyruvate-lyase. Both enzymes are required for complementation of a Yersinia irp9 mutant. However, irp9 is not able to complement Escherichia coli entC for the production of enterobactin, which requires isochorismate as a precursor. These results suggest that Irp9 directly converts chorismate into salicylate.
منابع مشابه
The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase.
The ability to acquire iron from the extracellular environment is a key determinant of pathogenicity in mycobacteria. Mycobacterium tuberculosis acquires iron exclusively via the siderophore mycobactin T, the biosynthesis of which depends on the production of salicylate from chorismate. Salicylate production in other bacteria is either a two-step process involving an isochorismate synthase (cho...
متن کاملTransfer of the core region genes of the Yersinia enterocolitica WA-C serotype O:8 high-pathogenicity island to Y. enterocolitica MRS40, a strain with low levels of pathogenicity, confers a yersiniabactin biosynthesis phenotype and enhanced mouse virulence.
The high-pathogenicity island (HPI) of yersiniae encodes an iron uptake system represented by its siderophore yersiniabactin (Ybt). The HPI is present in yersiniae with high levels of pathogenicity--i.e., Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica biogroup (BG) 1B--but absent in Y. enterocolitica strains with low (BG 2 to 5) and no (BG 1A) levels of pathogenicity and has been...
متن کاملMechanistic and inhibition studies of chorismate-utilizing enzymes.
The shikimate biosynthetic pathway is utilized in algae, higher plants, bacteria, fungi and apicomplexan parasites; it involves seven enzymatic steps in which phosphoenolpyruvate and erythrose 4-phosphate are converted into chorismate. In Escherichia coli, five chorismate-utilizing enzymes catalyse the synthesis of aromatic compounds such as L-phenylalanine, L-tyrosine, L-tryptophan, folate, ub...
متن کاملCommon and specific characteristics of the high-pathogenicity island of Yersinia enterocolitica.
Yersinia pestis, Y. pseudotuberculosis O:1, and Y. enterocolitica biogroup 1B strains carry a high-pathogenicity island (HPI), which mediates biosynthesis and uptake of the siderophore yersiniabactin and a mouse-lethal phenotype. The HPI of Y. pestis and Y. pseudotuberculosis (Yps HPI) are highly conserved in sequence and organization, while the HPI of Y. enterocolitica (Yen HPI) differs signif...
متن کاملIron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis.
BACKGROUND Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic Yersinia. Yersiniabactin contains a phenolic gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 185 18 شماره
صفحات -
تاریخ انتشار 2003