Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia).
نویسندگان
چکیده
Microbial methanogenesis at extreme conditions of saline alkaline soda lakes has, so far, been poorly investigated. Despite the obvious domination of sulfidogenesis as the therminal anaerobic process in the hypersaline soda lakes of Kulunda Steppe (Altai, southwestern Siberia), high concentrations of methane were detected in the anaerobic sediments. Potential activity measurements with different substrates gave results significantly deviating from what is commonly found in hypersaline habitats with neutral pH. In particular, not only a non-competitive methylotrophic pathway was active, but also lithotrophic and, in some cases, even acetate-dependent methanogenesis was found to be present in hypersaline soda lake sediments. All three pathways were functioning exclusively within the alkaline pH range between 8 and 10.5, while the salt concentration was the key factor influencing the activity. Methylotrophic and, to a lesser extent, lithotrophic methanogenesis were active up to soda-saturating conditions (4 M total Na(+)). Acetate-dependent methanogenesis was observed at salinities below 3 M total Na(+). Detection of methanogens in sediments using the mcrA gene as a functional marker demonstrated domination of methylotrophic genera Methanolobus and Methanosalsum and lithotrophic Methanocalculus. In a few cases, acetoclastic Methanosaeta was detected, as well as two deep lineage methanogens. Cultivation results corresponded well to the mcrA-based observations. Enrichments for natronophilic methylotrophic methanogens resulted in isolation of Methanolobus strains at moderate salinity, while at salt concentrations above 2 M Na(+) a novel member of the genus Methanosalsum was dominating. Enrichments with H2 or formate invariably resulted in domination of close relatives of Methanocalculus natronophilus. Enrichments with acetate at low salt concentration yielded two acetoclastic alkaliphilic Methanosaeta cultures, while at salinity above 1 M Na(+) syntrophic associations were apparently responsible for the observed acetate conversion to methane. Overall, the results indicated the presence of functionally structured and active methanogenic populations in Siberian hypersaline soda lakes.
منابع مشابه
Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes.
So far, anaerobic sulfate-dependent acetate oxidation at high pH has only been demonstrated for a low-salt-tolerant syntrophic association of a clostridium 'Candidatus Contubernalis alkalaceticum' and its hydrogenotrophic sulfate-reducing partner Desulfonatronum cooperativum. Anaerobic enrichments at pH 10 inoculated with sediments from hypersaline soda lakes of the Kulunda Steppe (Altai, Russi...
متن کاملComplete genome sequence of Thioalkalivibrio sp. K90mix
Thioalkalivibrio sp. K90mix is an obligately chemolithoautotrophic, natronophilic sulfur-oxidizing bacterium (SOxB) belonging to the family Ectothiorhodospiraceae within the Gammaproteobacteria. The strain was isolated from a mixture of sediment samples obtained from different soda lakes located in the Kulunda Steppe (Altai, Russia) based on its extreme potassium carbonate tolerance as an enric...
متن کاملDiversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes.
Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in sediment samples and enrichment cultures from a range of (hyper)saline soda lakes of the Kulunda Ste...
متن کاملDraft Genome Sequence of "Halomonas chromatireducens" Strain AGD 8-3, a Haloalkaliphilic Chromate- and Selenite-Reducing Gammaproteobacterium.
Here, we report the complete genome sequence (3.97 Mb) of "Halomonas chromatireducens" AGD 8-3, a denitrifying bacterium capable of chromate and selenite reduction under extreme haloalkaline conditions. This strain was isolated from soda solonchak soils of the Kulunda steppe, Russian Federation.
متن کاملMetagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines
Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology ecology
دوره 91 4 شماره
صفحات -
تاریخ انتشار 2015