Time-lapse observation of rat periodontal ligament during function and tooth movement, using microcomputed tomography.
نویسندگان
چکیده
The aim of this study was to observe the time-lapse changes in the rat periodontal ligament (PDL) during function and tooth movement. Under Nembutal anaesthesia, time-lapse changes in the thickness of the PDL of the first molars were investigated in five 12-week-old adolescent rats with microcomputed tomography. Three-dimensional (3D) images were reconstructed from the data. Histological observation was also performed, using undecalcified frozen sections of the maxillary first molar area. The PDL appeared as a radiolucent furrow on the 3D images. A slight change in the thickness of the PDL was observed 1 hour after initiation of orthodontic force loading, which became significant after 6 hours, with the appearance of pressure-tension zones during the tooth movement. These changes were more significant 3 days after orthodontic loading. Histological observation of the lingual cervical PDL (pressure zone) in nine 12- to 13-week-old rats demonstrated that the periodontal space had become narrow and the cellular elements appeared to be densely packed in the narrowed PDL 6 hours after orthodontic loading. Degeneration of tissues appeared 3 days after loading. Observation of the buccal cervical PDL (tension zone) demonstrated that the PDL was extended 6 hours after orthodontic force loading, and the extension continued for up to 3 days. Alkaline phosphatase activity was distributed in the PDL, except for the degenerating tissues in the pressure zone 3 days after loading. The results suggest that the periodontal reaction was initiated within 6 hours after orthodontic force loading, which was related to the structural changes of the PDL. The changes probably induced an early response in individual cells of the PDL.
منابع مشابه
A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments
Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and espe...
متن کاملTRAIL Immunolocalisation in the Rat Periodontal Ligament during Experimental Tooth Movement. A Preliminary Study
The aim of this study was to evaluate immunohistochemically TRAIL (TNF-Related Apoptosis Inducing Ligand) expression in the periodontal ligament of rats’ molars considering its distribution pattern in the tension and compressive regions of ligament during orthodontic movement. Sixteen Sprague-Dawley rats, weighing between 120 and 200 g were used in the present study. Tooth movement was induced ...
متن کاملMicroRNA 21 and PLAP-1 regulate periodontal ligament remodeling during tooth movement of rats
Periodontal ligament associated protein-1 (PLAP-1), a newly discovered extracellular matrix protein in periodontal ligament (PDL), plays a unique biological role in periodontal ligament mineralization. MicroRNA 21 (miR-21) is one of the endogenous small noncoding RNAs which is involved in osteogenic differentiation of PDLCs by targeting PLAP-1 in vitro. Our study was to investigate the specific...
متن کاملA Mathematical Approach for Describing Time-Dependent Poisson’s Ratios of Periodontal Ligaments
Periodontal ligament is a thin layer of soft tissue that connects root of a tooth to the surrounding alveolar bone. These ligaments play an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. The majority of such soft tissues exhibit as viscoelastic bodies or have a time-dependent behavior. Due to the viscoelastic behavior of the periodontal ...
متن کاملMicro-computed tomography analysis of changes in the periodontal ligament and alveolar bone proper induced by occlusal hypofunction of rat molars
OBJECTIVE To three-dimensionally elucidate the effects of occlusal hypofunction on the periodontal ligament and alveolar bone proper of rat molars by micro-computed tomography (micro-CT). METHODS Occlusal function in the molar area was restricted by attaching an anterior bite plate on the maxillary incisors and a metal cap on the mandibular incisors of 5-week-old male Wistar rats for 1 week. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of orthodontics
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2008