The Directed Distance Dimension of Oriented Graphs
نویسندگان
چکیده
For a vertex v of a connected oriented graph D and an ordered set W = {w1, w2, . . . , wk} of vertices of D, the (directed distance) representation of v with respect to W is the ordered k-tuple r(v ∣ ∣ W ) = (d(v,w1), d(v, w2), . . . , d(v, wk)), where d(v, wi) is the directed distance from v to wi. The set W is a resolving set for D if every two distinct vertices of D have distinct representations. The minimum cardinality of a resolving set for D is the (directed distance) dimension dim(D) of D. The dimension of a connected oriented graph need not be defined. Those oriented graphs with dimension 1 are characterized. We discuss the problem of determining the largest dimension of an oriented graph with a fixed order. It is shown that if the outdegree of every vertex of a connected oriented graph D of order n is at least 2 and dim(D) is defined, then dim(D) n − 3 and this bound is sharp.
منابع مشابه
Directed domination in oriented hypergraphs
ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...
متن کاملA CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION
The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$. In this case, $B$ is called a textit{metric basis} for $G$. The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$. Givi...
متن کاملThe metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملRepeated distances in space
For i = 1, . . . . n let C(x;, r,) be a circle in the plane with centre .x i and radius r; . A repeated distance graph is a directed graph whose vertices are the centres and where (xi, x;) is a directed edge whenever x; lies on the circle with centre x, . Special cases are the nearest neighbour graph, when ri is the minimum distance between x, and any other centre, and the furthest neighbour gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002