Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells
نویسندگان
چکیده
Tamoxifen resistance is often observed in the majority of estrogen receptor-positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in breast cancer cells such as adriamycin. Herein, we report that the glycolysis rates in LCC2 and LCC9--tamoxifen-resistant human breast cancer cell lines derived from MCF7--are higher than those in MCF7S, which is the parent MCF7 subline. Inhibition of key glycolytic enzyme such as hexokinase-2 resulted in cell growth retardation at higher degree in LCC2 and LCC9 than that in MCF7S. This implies that increased aerobic glycolysis even under O2-rich conditions, a phenomenon known as the Warburg effect, is closely associated with tamoxifen resistance. We found that HIF-1α is activated via an Akt/mTOR signaling pathway in LCC2 and LCC9 cells without hypoxic condition. Importantly, specific inhibition of hexokinase-2 suppressed the activity of Akt/mTOR/HIF-1α axis in LCC2 and LCC9 cells. In addition, the phosphorylated AMPK which is a negative regulator of mTOR was decreased in LCC2 and LCC9 cells compared to MCF7S. Interestingly, either the inhibition of mTOR activity or increase in AMPK activity induced a reduction in lactate accumulation and cell survival in the LCC2 and LCC9 cells. Taken together, our data provide evidence that development of tamoxifen resistance may be driven by HIF-1α hyperactivation via modulation of Akt/mTOR and/or AMPK signaling pathways. Therefore, we suggest that the HIF-1α hyperactivation is a critical marker of increased aerobic glycolysis in accordance with tamoxifen resistance and thus restoration of aerobic glycolysis may be novel therapeutic target for treatment of tamoxifen-resistant breast cancer.
منابع مشابه
Curcumin induces cell death and restores tamoxifen sensitivity in the antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9.
Curcumin, a principal component of turmeric (Curcuma longa), has potential therapeutic activities against breast cancer through multiple signaling pathways. Increasing evidence indicates that curcumin reverses chemo-resistance and sensitizes cancer cells to chemotherapy and targeted therapy in breast cancer. To date, few studies have explored its potential antiproliferation effects and resistan...
متن کاملInhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity.
The Akt kinase is a serine/threonine protein kinase that has been implicated in mediating a variety of biological responses. Studies show that high Akt activity in breast carcinoma is associated with a poor pathophenotype, as well as hormone and chemotherapy resistance. Additionally, high Akt activity is associated with other features of poor prognosis. Thus, a chemotherapeutic agent directed s...
متن کاملHIF2α contributes to antiestrogen resistance via positive bilateral crosstalk with EGFR in breast cancer cells
The majority of breast cancers express estrogen receptor α (ERα), and most patients with ERα-positive breast cancer benefit from antiestrogen therapy. The ERα-modulator tamoxifen and ERα-downregulator fulvestrant are commonly employed antiestrogens. Antiestrogen resistance remains a clinical challenge, with few effective treatments available for patients with antiestrogen-resistant breast cance...
متن کاملThe effects of 8 weeks aerobic training on HIF-1α, miR-21 and VEGF gene expression in female Balb/c with breast cancer
Background: Breast cancer, which is a major cancer for women, affects the angiogenesis process. Exercise training can decrease the process of angiogenesis in tumor tissue. The aim of present study was to investigate the effects of 8 weeks of aerobic training on HIF-1α, miR-21 and VEGF gene expression in female Balb/c mice with breast cancer. Materials and Methods: 16 female Balb/c mice (age: 3...
متن کاملActivation function-1 domain of estrogen receptor regulates the agonistic and antagonistic actions of tamoxifen.
The antiestrogen tamoxifen has been widely used for decades as selective estrogen receptor (ER) modulator for ERalpha-positive breast tumors. Tamoxifen significantly reduces tumor recurrence by binding to the activation function-2 (AF-2) domain of the ER. Acquired resistance to tamoxifen in breast cancer patients is a serious therapeutic problem. Antiestrogen-resistant breast cancer often shows...
متن کامل