Dynamics of the ITCZ–Equatorial Cold Tongue Complex and Causes of the Latitudinal Climate Asymmetry*
نویسندگان
چکیده
A coupled atmosphere–ocean–coastline model driven by solar radiation is advanced to understand the essential physics determining the annual cycle of the intertropical convergence zone (ITCZ)–equatorial cold tongue (ECT) complex and associated latitudinal climate asymmetry. With a thermocline depth similar to that of the western Pacific, the aquaplanet climate is latitudinal symmetric and stable. The presence of an oceanic eastern boundary supports an east–west asymmetric climate and an ECT due to unstable air–sea interaction and counter stabilization provided by zonal differential surface buoyancy flux. Formation of latitudinal climate asymmetry requires the presence of the ECT. The antisymmetric solar forcing due to annual variation of the solar declination angle can convert a stable latitudinal symmetric climate into a bistable-state latitudinal asymmetric climate by changing trade winds, which in turn control annual variations of the ECT. The ECT then interacts with ITCZ, providing a self-maintenance mechanism for ITCZ to linger in one hemisphere, either the northern or southern, depending on initial conditions. The establishment of the bistable-state asymmetry requires a delicate balance between counter effects of the antisymmetric solar forcing and self-maintenance. Two factors are critical for the latter: (i) The annual variation of ECT follows the SST of the ITCZ-free hemisphere and the meridional SST gradients between the ECT and ITCZ sustain moisture convergence, which prolongs residence of the ITCZ in summer hemisphere. (ii) The latent heat released in the ITCZ produces remarkable asymmetry in Hadley circulation and trades between the two hemispheres, and the stronger evaporation cooling in the ITCZ-free hemisphere delays and weakens the warming and convection development in that hemisphere. The annual cycle of insolation due to the earth–sun distance variation may convert the bistable-state asymmetry into a preferred latitudinal asymmetric climate. The earth’s present orbit (with a minimum distance in December solstices) favors ITCZ staying north of the equator by compelling the ECT into a delayed in-phase variation with the Southern Hemisphere SST. With annual-mean solar forcing a tilted eastern boundary can support a weak preferred latitudinal asymmetry. Inclusion of the annual variation of insolation can dramatically amplify the asymmetry in the mean climate through the self-maintenance mechanism.
منابع مشابه
Tropical Biases in Cmip5 Multi-model Ensemble: the Excessive Equatorial Pacific Cold Tongue and Double Itcz Problems
Errors of coupled general circulation models (CGCMs) limit their utility for climate prediction and projection. Origins of and feedback for tropical biases are investigated in the historical climate simulations of eighteen CGCMs from the Coupled Model Intercomparison Project phase 5 (CMIP5), together with the available Atmospheric Model Intercomparison Project (AMIP) simulations. Based on an in...
متن کاملEquatorial Atlantic variability and its relation to mean state biases in CMIP 5
2 ABSTRACT Coupled general circulation model (GCM) simulations participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analyzed with respect to their performance in the equatorial Atlantic. In terms of the mean state, 29 out of 33 models examined continue to suffer from serious biases including an annual mean zonal equatorial SST gradient whose sign is opposite to observa...
متن کاملVARIABILITY OF THE MARINE ITCZ OVER THE EASTERN PACIFIC DURING THE PAST 30,000 YEARS Regional Perspective and Global Context
The Intertropical Convergence Zone (ITCZ) is manifested as a circum-global atmospheric belt of intense, moist convection and rainfall, marking the confluence of the northern and southern trades and the rising branch of the Hadley cell. It regulates the hydrologic cycle over the tropical continents and interacts tightly with the tropical oceans, notably with the seasonal appearance of the equato...
متن کاملA Regional Ocean–Atmosphere Model for Eastern Pacific Climate: Toward Reducing Tropical Biases*
The tropical Pacific Ocean is a climatically important region, home to El Niño and the Southern Oscillation. The simulation of its climate remains a challenge for global coupled ocean–atmosphere models, which suffer large biases especially in reproducing the observed meridional asymmetry across the equator in sea surface temperature (SST) and rainfall. A basin ocean general circulation model is...
متن کاملLinks between Annual Variations of Peruvian Stratocumulus Clouds and of SST in the Eastern Equatorial Pacific
The hypothesis that Peruvian stratocumulus play an important role on both the annual mean and annual variations of sea surface temperature (SST) in the eastern equatorial Pacific is examined. The problem is addressed by performing sensitivity experiments using the University of California, Los Angeles, coupled atmosphere– ocean GCM with different idealized temporal variations of stratocumulus i...
متن کامل