A putative amino acid transporter is specifically expressed in haustoria of the rust fungus Uromyces fabae.
نویسندگان
چکیده
A cDNA library constructed from haustoria of the rust fungus Uromyces fabae was screened for clones that are differentially expressed in haustoria. One family of cDNAs (in planta-induced gene 2 [PIG2] was isolated and found to encode a protein with high homologies to fungal amino acid transporters. A cDNA clone containing the complete coding region of PIG2 and the corresponding genomic clone were isolated and sequenced, revealing the presence of 17 introns in the PIG2 gene. Expression of PIG2 mRNA appeared to be restricted to haustoria. With antibodies raised against synthetic peptides, the PIG2-encoded protein was found in membranes fractions of isolated haustoria but not of germinated rust spores. With immunofluorescence microscopy, the putative amino acid transporter was localized to plasma membranes of the haustorial bodies, but not detected in the haustorial neck, haustorial mother cells, or intercellular fungal hyphae growing within infected leaf tissue. These data present for the first time molecular evidence that the rust haustorium plays a special role in the uptake of nutrients from an infected host cell.
منابع مشابه
Characterization of a developmentally regulated amino acid transporter (AAT1p) of the rust fungus Uromyces fabae.
summary In the rust fungus Uromyces fabae, invasion of the host plant and haustorium formation are accompanied by the activation of many genes (PIGs =in planta induced genes). In addition to the previously described AAT2 (PIG2), AAT1 (PIG27) was found to encode a protein with a high similarity to fungal amino acid permeases. AAT1 transcripts are present in germinated hyphae and throughout the m...
متن کاملMicroarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae.
Rust fungi are plant parasites which colonise host tissue with an intercellular mycelium that forms haustoria within living plant cells. To identify genes expressed during biotrophic growth, EST sequencing was performed with a haustorium-specific cDNA library from Uromyces fabae. One thousand seventeen ESTs were generated, which assembled into 530 contigs. Several of the most frequently represe...
متن کاملThe role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae.
Biotrophic plant pathogenic fungi differentiate specialized infection structures within the living cells of their host plants. These haustoria have been linked to nutrient uptake ever since their discovery. We have for the first time to our knowledge shown that the flow of sugars from the host Vicia faba to the rust fungus Uromyces fabae seems to occur largely through the haustorial complex. On...
متن کاملCharacterization of in planta-induced rust genes isolated from a haustorium-specific cDNA library.
Rust fungi are plant parasites that depend on living host tissue for growth. For invasion of leaves, dikaryotic urediospores differentiate germ tubes and infection structures that penetrate through stomata. Biotrophic growth occurs by intercellular mycelia that form haustoria within host cells. A cDNA library was constructed from haustoria isolated from broad bean leaves infected by Uromyces fa...
متن کاملThe plasma membrane H(+)-ATPase from the biotrophic rust fungus Uromyces fabae: molecular characterization of the gene (PMA1) and functional expression of the enzyme in yeast.
To study the molecular basis of biotrophic nutrient uptake by plant parasitic rust fungi, the gene (Uf-PMA1) encoding the plasma membrane H(+)-ATPase from Uromyces fabae was isolated. Uf-PMA1 exists probably as a single gene. However, two nearly identical sequences were identified; the similarity apparently is due to two Uf-PMA1 alleles in the dikaryotic hyphae. Multiple Uf-PMA1 transcripts wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 10 4 شماره
صفحات -
تاریخ انتشار 1997