Role of RhoA in activity-dependent cortical axon branching.
نویسندگان
چکیده
During development, axon branching is influenced by sensory-evoked and spontaneous neural activity. We studied the molecular mechanism that underlies activity-dependent branch formation at horizontally elongating axons (horizontal axons) in the upper cortical layers, focusing on Rho family small GTPases. Axonal labeling with enhanced yellow fluorescent protein showed that horizontal axons formed several branches in organotypic slice cultures. This branch formation was considerably increased by introducing constitutively active RhoA and was slightly inhibited by dominant-negative RhoA. Activators and inhibitors of endogenous RhoA signaling also promoted and inhibited branching, respectively. Daily imaging of horizontal axon growth further demonstrated that constitutively active RhoA increased the dynamic addition and loss of branches. Moreover, the amount of active RhoA relative to the total amount of RhoA was examined by a pull-down assay in cortical slices treated with sodium channel or glutamate receptor blockers to reduce neural activity. Activity blockade significantly decreased active RhoA compared with normal culture conditions, in which spontaneous firing is prominent. These findings suggest that RhoA signaling acts as a positive regulator for activity-dependent axon branching in cortical neurons.
منابع مشابه
Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملNetrin-1 induces axon branching in developing cortical neurons by frequency-dependent calcium signaling pathways.
A single axon can innervate multiple targets by collateral branching. Axon branching is thus essential for establishing CNS connectivity. However, surprisingly little is known about the mechanisms by which branching is regulated. Axons often stop elongating before branches develop and anatomical and molecular data suggest that axon branching occurs independent of axon outgrowth. We found that n...
متن کاملRole of pre- and postsynaptic activity in thalamocortical axon branching.
Axonal branching is thought to be regulated not only by genetically defined programs but also by neural activity in the developing nervous system. Here we investigated the role of pre- and postsynaptic activity in axon branching in the thalamocortical (TC) projection using organotypic coculture preparations of the thalamus and cortex. Individual TC axons were labeled with enhanced yellow fluore...
متن کاملA novel Netrin-1–sensitive mechanism promotes local SNARE-mediated exocytosis during axon branching
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 37 شماره
صفحات -
تاریخ انتشار 2008