A structural insight into the prokaryotic heat shock transcription regulatory protein σ32: an implication of σ32-DnaK interaction
نویسندگان
چکیده
The heat shock response mechanism is a very vital biochemical process and is mainly controlled by σ(32) protein. The function of σ(32) is temperature dependent and at lower temperatures σ(32) is inactivated by its interactions with DnaK. This interaction is completely abolished above 42°C till date no molecular details of the interactions are available. In the present scenario, an attempt has been made to analyze first the predicted structure of σ(32) obtained by comparative modeling techniques and then to study the interactions between σ(32) and DnaK. From this molecular modeling study we could specifically identify the binding sites of the interactions of σ(32) with DnaK which will enlighten the mechanism of regulation of its activity and stability by DnaK. Our study provides the idea for future mutational experiments in order to find out the possible roles of the amino acids of region2 and region3 of σ(32) in stability as well as in binding with DnaK.
منابع مشابه
An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus
Hsp70 chaperones are well known for their important functions in maintaining protein homeostasis during thermal stress conditions. In many bacteria the Hsp70 homolog DnaK is also required for growth in the absence of stress. The molecular reasons underlying Hsp70 essentiality remain in most cases unclear. Here, we demonstrate that DnaK is essential in the α-proteobacterium Caulobacter crescentu...
متن کاملA Novel SRP Recognition Sequence in the Homeostatic Control Region of Heat Shock Transcription Factor σ32
Heat shock response (HSR) generally plays a major role in sustaining protein homeostasis. In Escherichia coli, the activity and amount of the dedicated transcription factor σ(32) transiently increase upon heat shock. The initial induction is followed by chaperone-mediated negative feedback to inactivate and degrade σ(32). Previous work reported that signal recognition particle (SRP)-dependent t...
متن کاملSystematic Analysis of the Robustness in Complex Reaction Networks of Bacteria
Barkai and Leibler [1] demonstrated a robust property of adaptation behavior in bacterial chemotaxis, indicating that the robust adaptation was a consequence of the network’s connectivity and the chemotaxis system did not require the fine-tuning of biochemical parameters. However, they did not answer the crucial question on whether it is possible to isolate such a subsystem from the whole syste...
متن کاملA Bacteriophage-Encoded J-Domain Protein Interacts with the DnaK/Hsp70 Chaperone and Stabilizes the Heat-Shock Factor σ32 of Escherichia coli
The universally conserved J-domain proteins (JDPs) are obligate cochaperone partners of the Hsp70 (DnaK) chaperone. They stimulate Hsp70's ATPase activity, facilitate substrate delivery, and confer specific cellular localization to Hsp70. In this work, we have identified and characterized the first functional JDP protein encoded by a bacteriophage. Specifically, we show that the ORFan gene 057w...
متن کاملProtein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins
BACKGROUND Overexpression of recombinant proteins usually triggers the induction of heat shock proteins that regulate aggregation and solubility of the overexpressed protein. The two-dimensional gel electrophoresis (2-DE)-mass spectrometry approach was used to profile the proteome of Escherichia coli overexpressing N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) and N-acetyl-D-neuramini...
متن کامل