A Three-Dimensional Multi-Block Newton-Krylov Flow Solver for the Euler Equations
نویسندگان
چکیده
A three-dimensional multi-block Newton-Krylov flow solver for the Euler equations has been developed for steady aerodynamic flows. The solution is computed through a Jacobian-free inexact-Newton method with an approximate-Newton method for startup. The linear system at each outer iteration is solved using a Generalized Minimal Residual (GMRES) Krylov subspace algorithm. An incomplete lower/upper (ILU) factored preconditioner with reverse Cuthill-McKee reordering is utilized to increase the efficiency of GMRES. The parameters in the solver are optimized to provide a balance between speed and robustness. Tests are performed using a variety of flow conditions and grid sizes. The solver demonstrates fast convergence and good correlation with experimental data.
منابع مشابه
A parallel Newton-Krylov flow solver for the Euler equations on multi-block grids
We present a parallel Newton-Krylov algorithm for solving the three-dimensional Euler equations on multi-block structured meshes. The Euler equations are discretized on each block independently using second-order accurate summation-by-parts operators and scalar numerical dissipation. Boundary conditions are imposed and block interfaces are coupled using simultaneous approximation terms (SATs). ...
متن کاملShort Communication A Parallel Newton–Krylov Method for Navier–Stokes Rotorcraft Codes
The application of Krylov subspace iterative methods to unsteady three-dimensional Navier–Stokes codes on massively parallel and distributed computing environments is investigated. Previously, the Euler mode of the Navier–Stokes flow solver Transonic Unsteady Rotor Navier–Stokes (TURNS) has been coupled with a Newton–Krylov scheme which uses two Conjugate-Gradient-like (CG) iterative methods. F...
متن کاملPreconditioners for Linearized Discrete Compressible Euler Equations
We consider a Newton-Krylov approach for discretized compressible Euler equations. A good preconditioner in the Krylov subspace method is essential for obtaining an efficient solver in such an approach. In this paper we compare point-block-Gauss-Seidel, point-block-ILU and point-block-SPAI preconditioners. It turns out that the SPAI method is not satisfactory for our problem class. The point-bl...
متن کاملNumbering Techniques for Preconditioners in Iterative Solvers for Compressible Flows
We consider Newton-Krylov methods for solving discretized compressible Euler equations. A good preconditioner in the Krylov subspace method is crucial for the efficiency of the solver. In this paper we consider a point-block Gauss-Seidel method as preconditioner. We describe and compare renumbering strategies that aim at improving the quality of this preconditioner. A variant of reordering meth...
متن کاملA Fully Coupled Newton-krylov Solver for Turbulent Aerodynamics Flows
A fast Newton-Krylov algorithm is presented for solving the compressible Navier-Stokes equations on structured multi-block grids with application to turbulent aerodynamic flows. The oneequation Spalart-Allmaras model is used to provide the turbulent viscosity. The optimization of the algorithm is discussed. ILU(4) is suggested for a preconditioner, operating on a modified Jacobian matrix. An ef...
متن کامل