Nucleosome Assembly by a Complex of CAF-1 and Acetylated Histones H3/H4
نویسندگان
چکیده
Chromatin assembly factor 1 (CAF-1) assembles nucleosomes in a replication-dependent manner. The small subunit of CAF-1 (p48) is a member of a highly conserved subfamily of WD-repeat proteins. There are at least two members of this subfamily in both human (p46 and p48) and yeast cells (Hat2p, a subunit of the B-type H4 acetyltransferase, and Msi1p). Human p48 can bind to histone H4 in the absence of CAF-1 p150 and p60. p48, also a known subunit of a histone deacetylase, copurifies with a chromatin assembly complex (CAC), which contains the three subunits of CAF-1 (p150, p60, p48) and H3 and H4, and promotes DNA replication-dependent chromatin assembly. CAC histone H4 exhibits a novel pattern of lysine acetylation that overlaps with, but is distinct from, that reported for newly synthesized H4 isolated from nascent chromatin. Our data suggest that CAC is a key intermediate of the de novo nucleosome assembly pathway and that the p48 subunit participates in other aspects of histone metabolism.
منابع مشابه
Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly
Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA ...
متن کاملThe Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1
Nucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4)2 deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging. Using hydrogen-deuterium exchange coupled to mass sp...
متن کاملThe N-terminal domains of histones H3 and H4 are not necessary for chromatin assembly factor-1- mediated nucleosome assembly onto replicated DNA in vitro.
An in vitro reconstitution system for the analysis of replication-coupled nucleosome assembly is described. In this "two-step system," nucleosome assembly is performed in a separate reaction from DNA replication, wherein purified newly replicated DNA remains noncovalently marked for subsequent chromatin assembly factor-1 (CAF-1)-dependent nucleosome assembly. Because the nucleosome assembly is ...
متن کاملA Cul4 E3 Ubiquitin Ligase Regulates Histone Hand-Off during Nucleosome Assembly
Nucleosome assembly following DNA replication and gene transcription is important to maintain genome stability and epigenetic information. Newly synthesized histones H3-H4 first bind histone chaperone Asf1 and are then transferred to other chaperones for nucleosome assembly. However, it is unknown how H3-H4 is transferred from the Asf1-H3-H4 complex to other chaperones because Asf1 binds H3-H4 ...
متن کاملCAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA
Anti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 87 شماره
صفحات -
تاریخ انتشار 1996