A self-invertibility condition for global periodicity of difference equations
نویسنده
چکیده
Given a non-degenerate interval of real numbers D, and a continuous function f : Dk → D with k ≥ 2, we consider a kth-order difference equation of the form yn+1 = f (yn, . . . , yn−k+1); n = 0, 1, 2, . . .. We develop an easy-to-apply necessary condition so that all solutions of the above-mentioned equation are periodic of the same period. c © 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
On the nature of solutions of the difference equation $mathbf{x_{n+1}=x_{n}x_{n-3}-1}$
We investigate the long-term behavior of solutions of the difference equation[ x_{n+1}=x_{n}x_{n-3}-1 ,, n=0 ,, 1 ,, ldots ,, ]noindent where the initial conditions $x_{-3} ,, x_{-2} ,, x_{-1} ,, x_{0}$ are real numbers. In particular, we look at the periodicity and asymptotic periodicity of solutions, as well as the existence of unbounded solutions.
متن کاملQualitative Behavior of Rational Difference Equation of Big Order
Recently, there has been a lot of interest in studying the global attractivity, the boundedness character, and the periodicity nature of nonlinear difference equations see for example, [1– 22]. The study of the nonlinear rational difference equations of a higher order is quite challenging and rewarding, and the results about these equations offer prototypes towards the development of the basic ...
متن کاملOn the periodic nature of some max-type difference equations
Recently there has been a lot of interest in studying the global attractivity, the boundedness character, and the periodicity nature of nonlinear difference equations. In [5, 6, 8] some global convergence results were established which can be applied to nonlinear difference equations in proving that every solution of these equations converges to a periodic solution (which need not necessarily b...
متن کاملPeriodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملA sufficient condition for global invertibility of Lipschitz mapping
We show that S.Vavasis’ sufficient condition for global invertibility of a polynomial mapping can be easily generalized to the case of a general Lipschitz mapping.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Math. Lett.
دوره 19 شماره
صفحات -
تاریخ انتشار 2006