Diploid genome reconstruction of Ciona intestinalis and comparative analysis with Ciona savignyi.

نویسندگان

  • Jong Hyun Kim
  • Michael S Waterman
  • Lei M Li
چکیده

One of the main goals in genome sequencing projects is to determine a haploid consensus sequence even when clone libraries are constructed from homologous chromosomes. However, it has been noticed that haplotypes can be inferred from genome assemblies by investigating phase conservation in sequenced reads. In this study, we seek to infer haplotypes, a diploid consensus sequence, from the genome assembly of an organism, Ciona intestinalis. The Ciona intestinalis genome is an ideal resource from which haplotypes can be inferred because of the high polymorphism rate (1.2%). The haplotype estimation scheme consists of polymorphism detection and phase estimation. The core step of our method is a Gibbs sampling procedure. The mate-pair information from two-end sequenced clone inserts is exploited to provide long-range continuity. We estimate the polymorphism rate of Ciona intestinalis to be 1.2% and 1.5%, according to two different polymorphism counting schemes. The distribution of heterozygosity number is well fit by a compound Poisson distribution. The N50 length of haplotype segments is 37.9 kb in our assembly, while the N50 scaffold length of the Ciona intestinalis assembly is 190 kb. We also infer diploid gene sequences from haplotype segments. According to our reconstruction, 85.4% of predicted gene sequences are continuously covered by single haplotype segments. Our results indicate 97% accuracy in haplotype estimation, based on a simulated data set. We conduct a comparative analysis with Ciona savignyi, and discover interesting patterns of conserved DNA elements in chordates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a custom Ciona intestinalis genome browser to visualize genomic conservation with Ciona savignyi

We have successfully designed a custom genome browser for visualization of the genome of the invertebrate chordate Ciona intestinalis. We describe the use of the genome browser to visualize the conservation between Ciona intestinalis and a related species, Ciona savignyi. Visualizing genomic conservation between these two organisms is important for determining genes and regulatory regions that ...

متن کامل

The C. savignyi genetic map and its integration with the reference sequence facilitates insights into chordate genome evolution.

The urochordate Ciona savignyi is an emerging model organism for the study of chordate evolution, development, and gene regulation. The extreme level of polymorphism in its population has inspired novel approaches in genome assembly, which we here continue to develop. Specifically, we present the reconstruction of all of C. savignyi's chromosomes via the development of a comprehensive genetic m...

متن کامل

Non-coding RNAs in Ciona intestinalis

MOTIVATION The analysis of animal genomes showed that only a minute part of their DNA codes for proteins. Recent experimental results agree, however, that a large fraction of these genomes are transcribed and hence are probably functional at the RNA level. A computational survey of vertebrate genomes has predicted thousands of previously unknown ncRNAs with evolutionarily conserved secondary st...

متن کامل

Noncoding regulatory sequences of Ciona exhibit strong correspondence between evolutionary constraint and functional importance.

We show that sequence comparisons at different levels of resolution can efficiently guide functional analyses of regulatory regions in the ascidians Ciona savignyi and Ciona intestinalis. Sequence alignments of several tissue-specific genes guided discovery of minimal regulatory regions that are active in whole-embryo reporter assays. Using the Troponin I (TnI) locus as a case study, we show th...

متن کامل

Exploiting the extraordinary genetic polymorphism of ciona for developmental genetics with whole genome sequencing.

Studies in tunicates such as Ciona have revealed new insights into the evolutionary origins of chordate development. Ciona populations are characterized by high levels of natural genetic variation, between 1 and 5%. This variation has provided abundant material for forward genetic studies. In the current study, we make use of deep sequencing and homozygosity mapping to map spontaneous mutations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome research

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 2007