IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation
نویسندگان
چکیده
0377-2217/$ see front matter 2010 Elsevier B.V. A doi:10.1016/j.ejor.2010.04.019 * Corresponding author. E-mail addresses: [email protected] (M.W. Ta Ntaimo). We present a new method for solving stochastic programs with joint chance constraints with random technology matrices and discretely distributed random data. The problem can be reformulated as a large-scale mixed 0–1 integer program. We derive a new class of optimality cuts called IIS cuts and apply them to our problem. The cuts are based on irreducibly infeasible subsystems (IIS) of an LP defined by requiring that all scenarios be satisfied. We propose a method for improving the upper bound of the problem when no cut can be found. We derive and implement a branch-and-cut algorithm based on IIS cuts, and refer to this algorithm as the IIS branch-and-cut algorithm. We report on computational results with several test instances from optimal vaccine allocation. The computational results are promising as the IIS branch-and-cut algorithm gives better results than a state-of-the-art commercial solver on one class of problems. 2010 Elsevier B.V. All rights reserved.
منابع مشابه
IIS Branch-and-Cut for Joint Chance-Constrained Programs with Random Technology Matrices
We present a new method for solving stochastic programs with joint chance constraints with random technology matrices and discretely distributed random data. The problem can be reformulated as a large-scale mixed 0-1 integer program. We derive a new class of optimality cuts called IIS cuts and apply them to our problem. The cuts are based on irreducibly infeasible subsets (IIS) of an LP defined...
متن کاملIIS Cuts for Stochastic Programs with Joint Chance-Constraints
We present a new method for solving stochastic programs with joint chance constraints with discretely distributed random data. The problem can be reformulated as a large-scale mixed 0-1 integer program. We derive a new class of optimality cuts based on irreducibly infeasible subsets (IIS) of an LP defined by requiring that all scenarios be satisfied and propose a method for improving the upper ...
متن کاملOptimal production strategy of bimetallic deposits under technical and economic uncertainties using stochastic chance-constrained programming
In order to catch up with reality, all the macro-decisions related to long-term mining production planning must be made simultaneously and under uncertain conditions of determinant parameters. By taking advantage of the chance-constrained programming, this paper presents a stochastic model to create an optimal strategy for producing bimetallic deposit open-pit mines under certain and uncertain ...
متن کاملScenario grouping and decomposition algorithms for chance-constrained programs
A lower bound for a finite-scenario chance-constrained problem is given by the quantile value corresponding to the sorted optimal objective values of scenario subproblems. This quantile bound can be improved by grouping subsets of scenarios at the expense of larger subproblems. The quality of the bound depends on how the scenarios are grouped. We formulate a mixed-integer bilevel program that o...
متن کاملUncertain Resource Availabilities: Proactive and Reactive Procedures for Preemptive Resource Constrained project Scheduling Problem
Project scheduling is the part of project management that deals with determining when intime to start (and finish) which activities and with the allocation of scarce resources to theproject activities. In practice, virtually all project managers are confronted with resourcescarceness. In such cases, the Resource-Constrained Project Scheduling Problem (RCPSP)arises. This optimization problem has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 207 شماره
صفحات -
تاریخ انتشار 2010