Swift heavy-ion irradiation-induced shape and structural transformation in cobalt nanoparticles

نویسندگان

  • D. J. Sprouster
  • R. Giulian
  • L. L. Araujo
  • P. Kluth
  • B. Johannessen
  • D. J. Cookson
  • M. C. Ridgway
چکیده

The shape and structural evolution of Co nanoparticles embedded in SiO2 and subjected to swift heavy-ion irradiation have been investigated over a wide energy and fluence range. Modifications of the nanoparticle size and shape were characterized with transmission electron microscopy and small-angle x-ray scattering. Nanoparticles below a threshold diameter remained spherical in shape and progressively decreased in size under irradiation due to dissolution. Nanoparticles above the threshold diameter transformed into nanorods with their major dimension parallel to the incident ion direction. Modifications of the atomic-scale structure of the Co nanoparticles were identified with x-ray absorption spectroscopy. Analysis of the x-ray absorption near-edge spectra showed that prior to irradiation all Co atoms were in a metallic state, while after irradiation Co atoms were in both oxidized and metallic environments, the former consistent with dissolution. The evolution of the nanoparticle short-range order was determined from extended x-ray absorption fine structure spectroscopy. Structural changes in the Co nanoparticles as a function of ion fluence included an increase in disorder and asymmetric deviation from a Gaussian interatomic distance distribution coupled with a decrease in bondlength. Such changes resulted from the irradiation-induced decrease in nanoparticle size and subsequent dissolution. VC 2011 American Institute of Physics. [doi:10.1063/1.3587171]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation

Changes in the shape and size of Co, Pt and Au nanoparticles induced by swift heavy-ion irradiation (SHII) have been characterized using a combination of transmission electron microscopy, small-angle x-ray scattering and x-ray absorption near-edge structure. Elemental nanoparticles of diameters 2-15 nm were first formed in amorphous SiO 2 by ion implantation and thermal annealing and then irrad...

متن کامل

Role of thermodynamics in the shape transformation of embedded metal nanoparticles induced by swift heavy-ion irradiation.

Swift heavy-ion irradiation of elemental metal nanoparticles (NPs) embedded in amorphous SiO(2) induces a spherical to rodlike shape transformation with the direction of NP elongation aligned to that of the incident ion. Large, once-spherical NPs become progressively more rodlike while small NPs below a critical diameter do not elongate but dissolve in the matrix. We examine this shape transfor...

متن کامل

Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation

We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the bea...

متن کامل

Swift heavy ion irradiation-induced modifications in structural, magnetic and electrical transport properties of epitaxial magnetite thin films

The effect of swift heavy ion SHI irradiation 190 MeV Ag on structural, electrical transport and magnetic properties of epitaxial magnetite Fe3O4 thin films thickness 70 nm grown on MgO 100 oriented substrate have been investigated. The x-ray diffraction shows that at low fluence values up to 5 1011 ions/cm2, the strain in the films is relaxed, whereas, at higher fluence range 1 1012–1 1013 ion...

متن کامل

Tracks and voids in amorphous Ge induced by swift heavy-ion irradiation.

Ion tracks formed in amorphous Ge by swift heavy-ion irradiation have been identified with experiment and modeling to yield unambiguous evidence of tracks in an amorphous semiconductor. Their underdense core and overdense shell result from quenched-in radially outward material flow. Following a solid-to-liquid phase transformation, the volume contraction necessary to accommodate the high-densit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011