A Subgrid-scale Model for Deflagration-to-Detonation Transitions in Type Ia Supernova Explosion Simulations
نویسنده
چکیده
Context. A promising model for normal Type Ia supernova (SN Ia) explosions are delayed detonations of Chandrasekhar-mass white dwarfs, in which the burning starts out as a subsonic deflagration and turns at a later phase of the explosion into a supersonic detonation. The mechanism of the underlying deflagration-to-detonation transition (DDT) is unknown in detail, but necessary conditions have been determined recently. The region of detonation initiation cannot be spatially resolved in multi-dimensional full-star simulations of the explosion. Aims. We develop a subgrid-scale (SGS) model for DDTs in thermonuclear supernova simulations that is consistent with the currently known constraints. Methods. The probability for a DDT to occur is calculated from the distribution of turbulent velocities measured on the grid scale in the vicinity of the flame and the fractal flame surface area that satisfies further physical constraints, such as fuel fraction and fuel density. Results. The implementation of our DDT criterion provides a solid basis for simulations of thermonuclear supernova explosions in the delayed detonation scenario. It accounts for the currently known necessary conditions for the transition and avoids the inclusion of resolution-dependent quantities in the model. The functionality of our DDT criterion is demonstrated on the example of one three-dimensional thermonuclear supernova explosion simulation.
منابع مشابه
Three-Dimensional Delayed-Detonation Model of Type Ia Supernova
We study a Type Ia supernova explosion using large-scale three-dimensional numerical simulations based on reactive fluid dynamics with a simplified mechanism for nuclear reactions and energy release. The initial deflagration stage of the explosion involves a subsonic turbulent thermonuclear flame propagating in the gravitational field of an expanding white dwarf. The deflagration produces an in...
متن کاملDelayed detonations in full-star models of Type Ia supernova explosions
Aims. We present the first full-star three-dimensional explosion simulations of thermonuclear supernovae including parameterized deflagration-to-detonation transitions that occur once the flame enters the distributed burning regime. Methods. Treating the propagation of both the deflagration and the detonation waves in a common front-tracking approach, the detonation is prevented from crossing a...
متن کاملDeflagrations and detonations in thermonuclear supernovae.
We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate...
متن کاملThree-dimensional Combustion in Type Ia Supernovae
Turbulent combustion is three-dimensional. Turbulence in a Type Ia supernova is driven on large scales by the buoyancy of burning products. The turbulent cascade penetrates down to very small scales, and makes the rate of deflagration independent of the microphysics. The competition between the turbulent cascade and the freeze-out of turbulent motions due to stellar expansion determines the lar...
متن کاملSmall-scale Interaction of Turbulence with Thermonuclear Flames in Type Ia Supernovae
Microscopic turbulence-flame interactions of thermonuclear fusion flames occuring in Type Ia Supernovae were studied by means of incompressible direct numerical simulations with a highly simplified flame description. The flame is treated as a single diffusive scalar field with a nonlinear source term. It is characterized by its Prandtl number, Pr ≪ 1, and laminar flame speed, SL. We find that i...
متن کامل