Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations
نویسنده
چکیده
Important quantities in aerodynamic flow simulations are the aerodynamic force coefficients including the pressure induced and the viscous stress induced drag, lift and moment coefficients. In addition to the exact approximation of these quantities it is of increasing importance, in particular in the field of uncertainty quantification, to estimate the error in the computed quantities. In recent years a posteriori error estimation and goal-oriented refinement approaches have been developed for the accurate and efficient computation of single target quantities. The current approaches are based on computing an adjoint solution related to each of the specific target quantities under consideration. In this paper we extend this approach to the accurate and efficient computation of multiple target quantities. Instead of computing multiple adjoint solutions, one for each target functional, the new approach is based on the solution to one discrete adjoint problem and one discrete error problem. This way only two auxiliary problems are required irrespective of the number of target functionals. The practical performance of this approach is demonstrated for a laminar compressible flow. In particular, the proposed approach is compared to the standard approach of error estimation and goal-oriented refinement as well as to residual-based refinement. The performance of the algorithms is measured in terms of computing resources required for meeting industrial as well as academic accuracy requirements on the computed force coefficients.
منابع مشابه
Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations
This article considers a posteriori error estimation and anisotropic mesh refinement for three-dimensional laminar aerodynamic flow simulations. The optimal order symmetric interior penalty discontinuous Galerkin discretization which has previously been developed for the compressible Navier-Stokes equations in two dimensions is extended to three dimensions. Symmetry boundary conditions are give...
متن کاملError estimation and adjoint-based refinement for multiple force coefficients in aerodynamic flow simulations
In this talk we give an overview of recent developments on adaptive higher order Discontinuous Galerkin discretizations for the use in computational aerodynamics at the DLR in Braunschweig. In particular, this includes some of the most recent developments and results achieved in the EU project ADIGMA. Important quantities of interest in aerodynamic flow simulations are the aerodynamic force coe...
متن کاملConstruction of Hexahedral Block Topology and its Decomposition to Generate Initial Tetrahedral Grids for Aerodynamic Applications
Making an initial tetrahedral grid for complex geometry can be a tedious and time consuming task. This paper describes a novel procedure for generation of starting tetrahedral cells using hexahedral block topology. Hexahedral blocks are arranged around an aerodynamic body to form a flow domain. Each of the hexahedral blocks is then decomposed into six tetrahedral elements to obtain an initial t...
متن کاملLoading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method
The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...
متن کاملA Review of Recent Studies on Simulations for Flow around High-Speed Trains
Fluid flow around bluff bodies occurs in numerous fields of science and engineering, such as flows pass vehicles, cables, towers and bridges. These flows have been studied experimentally and numerically for the last several decades. The investigation of flow around high-speed trains is an important application of bluff bodies. Fluid flow, aerodynamic forces and moments, separation and wake regi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 31 شماره
صفحات -
تاریخ انتشار 2008