A role for guanylate cyclase C in acid-stimulated duodenal mucosal bicarbonate secretion.

نویسندگان

  • S P Rao
  • Z Sellers
  • D L Crombie
  • D L Hogan
  • E A Mann
  • D Childs
  • S Keely
  • M Sheil-Puopolo
  • R A Giannella
  • K E Barrett
  • J I Isenberg
  • V S Pratha
چکیده

Luminal acidification provides the strongest physiological stimulus for duodenal HCO3- secretion. Various neurohumoral mechanisms are believed to play a role in acid-stimulated HCO3- secretion. Previous studies in the rat and human duodenum have shown that guanylin and Escherichia coli heat-stable toxin, both ligands of the transmembrane guanylyl cyclase receptor [guanylate cyclase C (GC-C)], are potent stimulators for duodenal HCO3- secretion. We postulated that the GC-C receptor plays an important role in acid-stimulated HCO3- secretion. In vivo perfusion studies performed in wild-type (WT) and GC-C knockout (KO) mice indicated that acid-stimulated duodenal HCO3- secretion was significantly decreased in the GC-C KO animals compared with the WT counterparts. Pretreatment with PD-98059, an MEK inhibitor, resulted in attenuation of duodenal HCO3- secretion in response to acid stimulation in the WT mice with no further effect in the KO mice. In vitro cGMP generation studies demonstrated a significant and comparable increase in cGMP levels on acid exposure in the duodenum of both WT and KO mice. In addition, a rapid, time-dependent phosphorylation of ERK was observed with acid exposure in the duodenum of WT mice, whereas a marked attenuation in ERK phosphorylation was observed in the KO animals despite equivalent levels of ERK in both groups of animals. On the basis of these studies, we conclude that transmembrane GC-C is a key mediator of acid-stimulated duodenal HCO3- secretion. Furthermore, ERK phosphorylation may be an important intracellular mediator of duodenal HCO3- secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Omeprazole promotes proximal duodenal mucosal bicarbonate secretion in humans.

The proton pump inhibitor, omeprazole, surprisingly resulted in higher rates of proximal duodenal mucosal bicarbonate secretion than previously reported using an H2 receptor antagonist for gastric acid inhibition. Gastroduodenal perfusions were performed in healthy volunteers to evaluate whether this incidental finding is explained by more potent gastric acid inhibition by omeprazole or might b...

متن کامل

Neuropeptide S reduces duodenal bicarbonate secretion and ethanol-induced increases in duodenal motility in rats

Alcohol disrupts the intestinal mucosal barrier by inducing metabolic and functional changes in epithelial cells. Recently, we showed that neuropeptide S (NPS) decreases duodenal motility and increases mucosal paracellular permeability, suggesting a role of NPS in the pathogenesis of disorders and dysfunctions in the small intestine. The aim of the present study was to investigate the effects o...

متن کامل

Protein kinase C potentiates cAMP-stimulated mouse duodenal mucosal bicarbonate secretion in vitro.

PKC has been shown to regulate epithelial Cl(-) secretion in a variety of models. However, the role of PKC in duodenal mucosal bicarbonate secretion is less clear. We aimed to investigate the role of PKC in regulation of duodenal mucosal bicarbonate secretion. Bicarbonate secretion by murine duodenal mucosa was examined in vitro in Ussing chambers using a pH-stat technique. PKC isoform expressi...

متن کامل

Role of Melatonin, Neuropeptide S and Short Chain Fatty Acids in Regulation of Duodenal Mucosal Barrier Function and Motility

Wan Saudi, W. S. 2015. Role of Melatonin, Neuropeptide S and Short Chain Fatty Acids in Regulation of Duodenal Mucosal Barrier Function and Motility. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1144. 89 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9369-1. The duodenal epithelium is regularly exposed to HCl, digestive enzymes, bacteria an...

متن کامل

Effect of bismuth subcitrate and sucralfate on rat duodenal and human gastric bicarbonate secretion in vivo.

Acid and alkali secretion have been examined together with prostaglandin E2 production in response to two mucosal protective drugs, colloidal bismuth subcitrate and sucralfate. Doses of colloidal bismuth subcitrate in the therapeutic range (120 and 1200 mg) had no effect on alkali secretion or luminal PGE2 output when perfused into the stomach of human volunteers. Similarly, in the anaesthetise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 286 1  شماره 

صفحات  -

تاریخ انتشار 2004