The toxicology of hydroquinone--relevance to occupational and environmental exposure.
نویسنده
چکیده
Hydroquinone (HQ) is a high-volume commodity chemical used as a reducing agent, antioxidant, polymerization inhibitor, and chemical intermediate. It is also used in over-the-counter (OTC) drugs as an ingredient in skin lighteners and is a natural ingredient in many plant-derived products, including vegetables, fruits, grains, coffee, tea, beer, and wine. While there are few reports of adverse health effects associated with the production and use of HQ, a great deal of research has been conducted with HQ because it is a metabolite of benzene. Physicochemical differences between HQ and benzene play a significant role in altering the pharmacokinetics of directly administered when compared with benzene-derived HQ. HQ is only weakly positive in in vivo chromosomal assays when expected human exposure routes are used. Chromosomal effects are increased significantly when parenteral or in vitro assays are used. In cancer bioassays, HQ has reproducibly produced renal adenomas in male F344 rats. The mechanism of tumorigenesis is unclear but probably involves a species-, strain-, and sex-specific interaction between renal tubule toxicity and an interaction with the chronic progressive nephropathy that is characteristic of aged male rats. Mouse liver tumors (adenomas) and mononuclear cell leukemia (female F344 rat) have also been reported following HQ exposure, but their significance is uncertain. Various tumor initiation/promotion assays with HQ have shown generally negative results. Epidemiological studies with HQ have demonstrated lower death rates and reduced cancer rates in production workers when compared with both general and employed referent populations. Parenteral administration of HQ is associated with changes in several hematopoietic and immunologic endpoints. This toxicity is more severe when combined with parenteral administration of phenol. It is likely that oxidation of HQ within the bone marrow compartment to the semiquinone or p-benzoquinone (BQ), followed by covalent macromolecular binding, is critical to these effects. Bone marrow and hematologic effects are generally not characteristic of HQ exposures in animal studies employing routes of exposure other than parenteral. Myelotoxicity is also not associated with human exposure to HQ. These differences are likely due to significant route-dependent toxicokinetic factors. Fetotoxicity (growth retardation) accompanies repeated administration of HQ at maternally toxic dose levels in animal studies. HQ exposure has not been associated with other reproductive and developmental effects using current USEPA test guidelines. The skin pigment lightening properties of HQ appear to be due to inhibition of melanocyte tyrosinase. Adverse effects associated with OTC use of HQ in FDA-regulated products have been limited to a small number of cases of exogenous ochronosis, although higher incidences of this syndrome have been reported with inappropriate use of unregulated OTC products containing higher HQ concentrations. The most serious human health effect related to HQ is pigmentation of the eye and, in a small number of cases, permanent corneal damage. This effect has been observed in HQ production workers, but the relative contributions of HQ and BQ to this process have not been delineated. Corneal pigmentation and damage has not been reported at current exposure levels of <2 mg/m3. Current work with HQ is being focused on tissue-specific HQ-glutathione metabolites. These metabolites appear to play a critical role in the renal effects observed in F344 rats following HQ exposure and may also be responsible for bone marrow toxicity seen after parenteral exposure to HQ or benzene-derived HQ.
منابع مشابه
Biochemical and Histopathological Effects of Acute Exposure to Vinyl Acetate Monomer Vapour in Wistar Rats
Background: Vinyl acetate monomer is a commodity chemical widely used in the manufacturing of various products. The chemical is hazardous and exposure to it may occur in both occupational and non-occupational settings. The aim of this study was to characterize the effects of short-term exposure to Vinyl Acetate Monomer (VAM) vapour on the liver and lungs of Wistar rats. Methods: Mice weighing ...
متن کاملSpecies comparison of hepatic and pulmonary metabolism of benzene.
Benzene is an occupational hazard and environmental toxicant found in cigarette smoke, gasoline, and the chemical industry. The major health concern associated with benzene exposure is leukemia. Studies using microsomal preparations from human, mouse, rabbit, and rat to determine species differences in the metabolism of benzene to phenol, hydroquinone and catechol, indicate that the rat is most...
متن کاملEvaluation of biomarkers for occupational exposure to benzene.
OBJECTIVE To evaluate the relations between environmental benzene concentrations and various biomarkers of exposure to benzene. METHODS Analyses were carried out on environmental air, unmetabolised benzene in urine, trans, trans-muconic acid (ttMA), and three major phenolic metabolites of benzene; catechol, hydroquinone, and phenol, in two field studies on 64 workers exposed to benzene concen...
متن کاملBiological monitoring of genotoxicity to organophosphate pesticide exposure among rice farmers: Exposure-effect continuum study
Background: This study has used biomarker of exposure-effect continuum to examine the biological characteristics of organophosphate (OP) toxicity and its genotoxic effect among rice farmers. Materials and Methods: A cross-sectional study was conducted among 160 pesticide exposed rice farmers and 160 adults from the fishing village as the unexposed group. They share the common socio-economical ...
متن کاملBiomarkers of exposure to low concentrations of benzene: a field assessment.
OBJECTIVE To carry out a comprehensive field investigation to evaluate various conventional and recently developed biomarkers for exposure to low concentrations of benzene. METHODS Analyses were carried out on environmental air, unmetabolised benzene in blood and urine, urinary trans, transmuconic acid, and three major phenolic metabolites of benzene: phenol, catechol, and hydroquinone. Valid...
متن کاملHydroquinone: Environmental Pollution, Toxicity, and Microbial Answers
Hydroquinone is a major benzene metabolite, which is a well-known haematotoxic and carcinogenic agent associated with malignancy in occupational environments. Human exposure to hydroquinone can occur by dietary, occupational, and environmental sources. In the environment, hydroquinone showed increased toxicity for aquatic organisms, being less harmful for bacteria and fungi. Recent pieces of ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Critical reviews in toxicology
دوره 29 3 شماره
صفحات -
تاریخ انتشار 1999