Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate.
نویسندگان
چکیده
We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic below 10 μg/L in synthetic Bangladesh groundwater and in real groundwater from Bangladesh and Cambodia, while investigating the effect of operating parameters that are often overlooked, such as charge dosage rate. We measure arsenic removal performance over a larger range of current density than in any other single previous EC study (5000-fold: 0.02 - 100 mA/cm(2)) and over a wide range of charge dosage rates (0.060 - 18 Coulombs/L/min). We find that charge dosage rate has significant effects on both removal capacity (μg-As removed/Coulomb) and treatment time and is the appropriate parameter to maintain performance when scaling to different active areas and volumes. We estimate the operating costs of EC treatment in Bangladesh groundwater to be $0.22/m(3). Waste sludge (~80 - 120 mg/L), when tested with the Toxic Characteristic Leachate Protocol (TCLP), is characterized as non-hazardous. Although our focus is on developing a practical device, our results suggest that As[III] is mostly oxidized via a chemical pathway and does not rely on processes occurring at the anode. Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A, to view the free supplemental file.
منابع مشابه
1 Arsenic removal from groundwater using iron
10 11 We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic 12 below 10 µg/L in synthetic Bangladesh groundwater and in real groundwater from 13 Bangladesh and Cambodia while investigating the effect of operating parameters that are 14 often overlooked, such as charge dosage rate. We measure arsenic removal performance 15 over a larger range of current density tha...
متن کاملModeling As(III) oxidation and removal with iron electrocoagulation in groundwater.
Understanding the chemical kinetics of arsenic during electrocoagulation (EC) treatment is essential for a deeper understanding of arsenic removal using EC under a variety of operating conditions and solution compositions. We describe a highly constrained, simple chemical dynamic model of As(III) oxidation and As(III,V), Si, and P sorption for the EC system using model parameters extracted from...
متن کاملRemoval of arsenic from water by electrocoagulation.
In the present study electrocoagulation (EC) has been evaluated as a treatment technology for arsenite [As(III)] and arsenate [As(V)] removal from water. Laboratory scale experiments were conducted with three electrode materials namely, iron, aluminum and titanium to assess their efficiency. Arsenic removal obtained was highest with iron electrodes. EC was able to bring down aqueous phase arsen...
متن کاملZero Valent Iron Nanoparticle Assisted Electrocoagulation of Arsenic with electromagnetic Separation of Solids
A new arsenic removal process was designed combining: 1) iron nanoparticle addition, b) electrocoagulation, and c) electromagnetic separation. Results showed that arsenic could be removed with more than 99 % efficiency from liquid waste samples. Parameters that were found to have importance on the process were: a) nanoparticle dosage, b) electric voltage drop during electrocoagulation, b) pH of...
متن کاملModeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology
Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering
دوره 48 9 شماره
صفحات -
تاریخ انتشار 2013