System Uncertainty Based Data-Driven Knowledge Acquisition
نویسندگان
چکیده
In the three-layered framework for knowledge discovery, it is necessary for technique layer to develop some data-driven algorithms, whose knowledge acquiring process is characterized by and hence advantageous for the unnecessity of prior domain knowledge or external information. System uncertainty is able to conduct data-driven knowledge acquiring process. It is crucial for such a knowledge acquiring framework to measure system uncertainty reasonably and precisely. Herein, in order to find a suitable measuring method, various uncertainty measures based on rough set theory are comprehensively studied: their algebraic characteristics and quantitative relations are disclosed; their performances are compared through a series of experimental tests; consequently, the optimal measure is determined. Then, a new data-driven knowledge acquiring algorithm is developed based on the optimal uncertainty measure and the Skowron’s algorithm for mining propositional default decision rules. Results of simulation experiments illustrate that the proposed algorithm obviously outperforms some other congeneric algorithms.
منابع مشابه
Active User Interfaces for Building Decision-theoretic Systems
Knowledge elicitation/acquisition continues to be a bottleneck to constructing decisiontheoretic systems. Methodologies and techniques for incremental elicitation/acquisition of knowledge especially under uncertainty in support of users' current goals is desirable. This paper presents PESKI, a probabilistic expert system development environment. PESKI provides users with a highly interactive an...
متن کاملA novel risk-based analysis for the production system under epistemic uncertainty
Risk analysis of production system, while the actual and appropriate data is not available, will cause wrong system parameters prediction and wrong decision making. In uncertainty condition, there are no appropriate measures for decision making. In epistemic uncertainty, we are confronted by the lack of data. Therefore, in calculating the system risk, we encounter vagueness that we have to use ...
متن کاملDiscrete-time repetitive optimal control: Robotic manipulators
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...
متن کاملTowards A Universal Tool For NLP Resource Acquisition
This paper describes an approach to developing a universal tool for eliciting, from a non-expert human user, knowledge about any language L. The purpose of this elicitation is rapid development of NLP systems. The approach is described on the example of the syntax module of the Boas knowledge elicitation system for a quick ramp up of a standard transfer-based machine translation system from L i...
متن کاملData-Driven Approaches to Improve the Quality of Clinical Processes: A Systematic Review
Background: Considering the emergence of electronic health records and their related technologies, an increasing attention is paid to data driven approaches like machine learning, data mining, and process mining. The aim of this paper was to identify and classify these approaches to enhance the quality of clinical processes. Methods: In order to determine the knowledge related to the research ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJSSCI
دوره 1 شماره
صفحات -
تاریخ انتشار 2009