A new proof of the bound for the first Dirichlet eigenvalue of the Laplacian operator

نویسندگان

  • Chang-Jun Li
  • Xiang Gao
چکیده

In this paper, we present a new proof of the upper and lower bound estimates for the first Dirichlet eigenvalue λ1 (B (p, r)) of Laplacian operator for the manifold with Ricci curvature Rc ≥ −K, by using Li-Yau’s gradient estimate for the heat equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The characterization of eigenfunctions for Laplacian operators

In this paper, we consider the characterization of eigenfunctions for Laplacian operators on some Riemannian manifolds. Firstly we prove that for the space form (M K , gK) with the constant sectional curvature K, the first eigenvalue of Laplacian operator λ1 (M K) is greater than the limit of the first Dirichlet eigenvalue of Laplacian operator λ1 (BK (p, r)). Based on this, we then present a c...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

A Sharp Upper Bound for the First Dirichlet Eigenvalue and the Growth of the Isoperimetric Constant of Convex Domains

We show that as the ratio between the first Dirichlet eigenvalues of a convex domain and of the ball with the same volume becomes large, the same must happen to the corresponding ratio of isoperimetric constants. The proof is based on the generalization to arbitrary dimensions of Pólya and Szegö’s 1951 upper bound for the first eigenvalue of the Dirichlet Laplacian on planar star-shaped domains...

متن کامل

Existence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator

The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.

متن کامل

Friedlander’s Eigenvalue Inequalities and the Dirichlet-to-neumann Semigroup

If Ω is any compact Lipschitz domain, possibly in a Riemannian manifold, with boundary Γ = ∂Ω, the Dirichlet-to-Neumann operator Dλ is defined on L2(Γ) for any real λ. We prove a close relationship between the eigenvalues of Dλ and those of the Robin Laplacian ∆μ, i.e. the Laplacian with Robin boundary conditions ∂νu = μu. This is used to give another proof of the Friedlander inequalities betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014