Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples.

نویسندگان

  • Atinuke Adebanji
  • Michael Asamoah-Boaheng
  • Olivia Osei-Tutu
چکیده

This study investigates the asymptotic performance of the Quadratic Discriminant Function (QDF) under correlated and uncorrelated normal training samples. This paper specifically examines the effect of correlation, uncorrelation considering different sample size ratios, number of variables and varying group centroid separators ([Formula: see text], [Formula: see text]) on classification accuracy of the QDF using simulated data from three populations ([Formula: see text]). The three populations differs with respect to their mean vector and covariance matrices. The results show the correlated normal distribution exhibits high coefficient of variation as [Formula: see text] increased. The QDF performed better when the training samples were correlated than when they were under uncorrelated normal distribution. The QDF performed better resulting in the reduction in misclassification error rates as group centroid separator increases with non increasing sample size under correlated training samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques

ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...

متن کامل

Performance Analysis of Dynamic and Static Facility Layouts in a Stochastic Environment

In this paper, to cope with the stochastic dynamic (or multi-period) problem, two new quadratic assignment-based mathematical models corresponding to the dynamic and static approaches are developed. The product demands are presumed to be dependent uncertain variables with normal distribution having known expectation, variance, and covariance that change from one period to the next one, randomly...

متن کامل

Asymptotic performance of the quadratic discriminant function to skewed training samples

This study investigates the asymptotic performance of the quadratic discriminant function (QDF) under skewed training samples. The main objective of this study is to evaluate the performance of the QDF under skewed distribution considering different sample size ratios, varying the group centroid separators and the number of variables. Three populations [Formula: see text] with increasing group ...

متن کامل

A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD

The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...

متن کامل

تحلیل ممیز غیرپارامتریک بهبودیافته برای دسته‌بندی تصاویر ابرطیفی با نمونه آموزشی محدود

Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SpringerPlus

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016