The Geometry of Formal Varieties in Algebraic Topology I
نویسنده
چکیده
Algebraic topology is full of computations with rings, and where we find rings we should seek geometry through methods of algebraic geometry. The geometry of formal varieties turn out to organize many interesting computations in topology, and certain formal varieties called commutative, one-dimensional formal groups give the best global picture of stable homotopy theory currently available. I will give as friendly an introduction to these ideas as can be managed; in particular, I will not assume the audience knows any
منابع مشابه
The Geometry of Formal Varieties in Algebraic Topology Ii
A continuation of the previous talk: The Geometry of Formal Varieties in Algebraic Topology I. This time, we’ll discuss complex oriented cohomology theories in general, including the various pieces of Quillen’s theorem describing complex bordism and its relationship to the moduli stack of formal groups. Investigating specific features of this stack will give rise to descriptions of homology coo...
متن کاملAround the tangent cone theorem
A cornerstone of the theory of cohomology jump loci is the Tangent Cone theorem, which relates the behavior around the origin of the characteristic and resonance varieties of a space. We revisit this theorem, in both the algebraic setting provided by cdga models, and in the topological setting provided by fundamental groups and cohomology rings. The general theory is illustrated with several cl...
متن کاملMt822: Introduction to Algebraic Geometry
1. Algebraic varieties 2 1.1. Affine varieties 2 1.2. Projective varieties 2 1.3. Zariski topology 3 1.4. Algebraic geometry and analytic geometry 3 1.5. Singular varieties 3 1.6. Ideals 4 1.7. Regular functions and maps 5 2. Sheaves and cohomology 6 2.1. The Mittag-Leffler problem 7 2.2. Sheaves 7 2.3. Maps of sheaves 8 2.4. Stalks and germs 10 2.5. Cohomology of sheaves 11 3. Vector bundles, ...
متن کاملMath 631 Notes Algebraic Geometry Lectures
1 Algebraic sets, affine varieties, and the Zariski topology 4 1.1 Algebraic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Hilbert basis theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Zariski topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Proof that affine algebraic sets form closed sets on a t...
متن کاملAlgebraic Geometry the Fundamental Ideas of Abstract Algebraic Geometry
ALGEBRAIC GEOMETRY 79 It may be advisable to give a special name to those varieties which admit every (allowable) ground field as field of definition. Obviously, these are the varieties which are defined over the prime field of the given characteristic p. I propose to call them universal varieties. The projective space and the Grassmannian varieties are examples of universal varieties. Another ...
متن کامل