Non-EEG seizure detection systems and potential SUDEP prevention: State of the art Review and update
نویسندگان
چکیده
PURPOSE Detection of, and alarming for epileptic seizures is increasingly demanded and researched. Our previous review article provided an overview of non-invasive, non-EEG (electro-encephalography) body signals that can be measured, along with corresponding methods, state of the art research, and commercially available systems. Three years later, many more studies and devices have emerged. Moreover, the boom of smart phones and tablets created a new market for seizure detection applications. METHOD We performed a thorough literature review and had contact with manufacturers of commercially available devices. RESULTS This review article gives an updated overview of body signals and methods for seizure detection, international research and (commercially) available systems and applications. Reported results of non-EEG based detection devices vary between 2.2% and 100% sensitivity and between 0 and 3.23 false detections per hour compared to the gold standard video-EEG, for seizures ranging from generalized to convulsive or non-convulsive focal seizures with or without loss of consciousness. It is particularly interesting to include monitoring of autonomic dysfunction, as this may be an important pathophysiological mechanism of SUDEP (sudden unexpected death in epilepsy), and of movement, as many seizures have a motor component. CONCLUSION Comparison of research results is difficult as studies focus on different seizure types, timing (night versus day) and patients (adult versus pediatric patients). Nevertheless, we are convinced that the most effective seizure detection systems are multimodal, combining for example detection methods for movement and heart rate, and that devices should especially take into account the user's seizure types and personal preferences.
منابع مشابه
Non-EEG seizure-detection systems and potential SUDEP prevention: State of the art
PURPOSE There is a need for a seizure-detection system that can be used long-term and in home situations for early intervention and prevention of seizure related side effects including SUDEP (sudden unexpected death in epileptic patients). The gold standard for monitoring epileptic seizures involves video/EEG (electro-encephalography), which is uncomfortable for the patient, as EEG electrodes a...
متن کاملEpileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملSeizure detection, seizure prediction, and closed-loop warning systems in epilepsy
Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature co...
متن کاملNewborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain
This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...
متن کاملEpileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties
Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Seizure
دوره 41 شماره
صفحات -
تاریخ انتشار 2016