Ergodic Theory and Dynamical Systems
نویسنده
چکیده
We construct templates for geodesic flows on an infinite family of Hecke triangle groups. Our results generalize those of E. Ghys [Knots and dynamics. Proc. Int. Congress of Mathematicians. Vol. 1. International Congress of Mathematicians, Zürich, 2007], who constructed a template for the modular flow in the complement of the trefoil knot in S3. A significant difficulty that arises in any attempt to go beyond the modular flow is the fact that for other Hecke triangles the geodesic flow cannot be viewed as a flow in S3, and one is led to consider embeddings into lens spaces. Our final result is an explicit description of a single ‘Hecke template’ which contains all other templates we construct, allowing a topological study of the periodic orbits of different Hecke triangle groups all at once.
منابع مشابه
SOME ERGODIC PROPERTIES OF HYPER MV {ALGEBRA DYNAMICAL SYSTEMS
This paper provides a review on major ergodic features of semi-independent hyper MV {algebra dynamical systems. Theorems are presentedto make contribution to calculate the entropy. Particularly, it is proved that thetotal entropy of those semi-independent hyper MV {algebra dynamical systemsthat have a generator can be calculated with respect to their generator ratherthan considering all the par...
متن کاملRELATIVE INFORMATION FUNCTIONAL OF RELATIVE DYNAMICAL SYSTEMS
In this paper by use of mathematical modeling of an observer [14,15] the notion of relative information functional for relative dynamical systemson compact metric spaces is presented. We extract the information function ofan ergodic dynamical system (X,T) from the relative information of T fromthe view point of observer χX, where X denotes the base space of the system.We also generalize the in...
متن کاملA Note to the Ergodic Theory for Fuzzy Dynamical Systems
In the paper [16], the fuzzy dynamical systems had been defined. In this contribution, using the method of F- -ideals, ergodic theorems for fuzzy dynamical systems are proved.
متن کاملTransition state theory and dynamical corrections in ergodic systems
The results of transition state theory are derived rigorously in the general context of ergodic dynamical systems defined by a vector field on a Riemannian manifold. A new perspective on how to compute the dynamical corrections to the TST transition frequency is given. Hamiltonian dynamical systems are considered as a special case and the so-called Marcus formula for the rate constant is re-der...
متن کاملPoisson suspensions and infinite ergodic theory
We investigate ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite measure ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar looking Gaus...
متن کامل2 6 Fe b 20 08 POISSON SUSPENSIONS AND INFINITE ERGODIC THEORY
We investigate ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite measure ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar looking Gaus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013