MOPS: Multivariate orthogonal polynomials (symbolically)
نویسندگان
چکیده
In this paper we present a Maple library (MOPs) for computing Jack, Hermite, Laguerre, and Jacobi multivariate polynomials, as well as eigenvalue statistics for the Hermite, Laguerre, and Jacobi ensembles of Random Matrix theory. We also compute multivariate hypergeometric functions, and offer both symbolic and numerical evaluations for all these quantities. We prove that all algorithms are well-defined, analyze their complexity, and illustrate their performance in practice. Finally, we also present a few of the possible applications of this library.
منابع مشابه
Zeros of Orthogonal Polynomials Generated by the Geronimus Perturbation of Measures
This paper deals with monic orthogonal polynomial sequences (MOPS in short) generated by a Geronimus canonical spectral transformation of a positive Borel measure μ, i.e., 1 (x− c) dμ(x) +Nδ(x− c), for some free parameter N ∈ R+ and shift c. We analyze the behavior of the corresponding MOPS. In particular, we obtain such a behavior when the mass N tends to infinity as well as we characterize th...
متن کاملBlock Jacobi Matrices and Zeros of Multivariate Orthogonal Polynomials
A commuting family of symmetric matrices are called the block Jacobi matrices, if they are block tridiagonal. They are related to multivariate orthogonal polynomials. We study their eigenvalues and joint eigenvectors. The joint eigenvalues of the truncated block Jacobi matrices correspond to the common zeros of the multivariate orthogonal polynomials.
متن کامل. C A ] 4 O ct 2 00 6 A SEMICLASSICAL PERSPECTIVE ON MULTIVARIATE ORTHOGONAL POLYNOMIALS
Differential properties for orthogonal polynomials in several variables are studied. We consider multivariate orthogonal polynomials whose gradients satisfy some quasi–orthogonality conditions. We obtain several characterizations for these polynomials including the analogous of the semiclas-sical Pearson differential equation, the structure relation and a differential– difference equation.
متن کاملRecurrence Formulas for Multivariate Orthogonal Polynomials
In this paper, necessary and sufficient conditions are given so that multivariate orthogonal polynomials can be generated by a recurrence formula. As a consequence, orthogonal polynomials of total degree n in d variables that have dim n¡( common zeros can now be constructed recursively. The result is important to the construction of Gaussian cubature formulas.
متن کاملMultivariate Krawtchouk Polynomials and Composition Birth and Death Processes
This paper defines the multivariate Krawtchouk polynomials, orthogonal on the multinomial distribution, and summarizes their properties as a review. The multivariate Krawtchouk polynomials are symmetric functions of orthogonal sets of functions defined on each of N multinomial trials. The dual multivariate Krawtchouk polynomials, which also have a polynomial structure, are seen to occur natural...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 42 شماره
صفحات -
تاریخ انتشار 2007