Repression of nitrate uptake by replacement of Asp105 by asparagine in AtNRT3.1 in Arabidopsis thaliana L.

نویسندگان

  • Tahei Kawachi
  • Yoshihito Sunaga
  • Munehiro Ebato
  • Tetsuya Hatanaka
  • Hisatomi Harada
چکیده

An Arabidopsis mutant (rnc1) with a mutation at the 313th nucleotide from the translational start site of AtNRT3.1 was isolated. The mutation resulted in the replacement of aspartate by asparagine at the 105th amino acid in a region conserved among higher plants. In the rnc1 mutant, both the nitrate concentrations in plants and the nitrate uptake from the medium were <13% compared with those of the wild type, while AtNRT3.1 mRNA was accumulated similarly and both AtNRT1.1 and AtNRT2.1 mRNA were decreased. These results suggest that the replacement of Asp105 in AtNRT3.1 markedly reduces nitrate uptake and accumulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1.

The NAR2 protein of Chlamydomonas reinhardtii has no known transport activity yet it is required for high-affinity nitrate uptake. Arabidopsis (Arabidopsis thaliana) possesses two genes, AtNRT3.1 and AtNRT3.2, that are similar to the C. reinhardtii NAR2 gene. AtNRT3.1 accounts for greater than 99% of NRT3 mRNA and is induced 6-fold by nitrate. AtNRT3.2 was expressed constitutively at a very low...

متن کامل

Uptake and nitrate accumulation affected by partial replacement of nitrate-N with different source of amino acids in spinach and lettuce

As natural plant growth stimulators, amino acids are widely used to improve the yield and quality of crops. Change in enzymes activities of N assimilation (NR, NiR and GS), residual nitrate (NO3-), soluble protein content, and yield of spinach and lettuce plants were investigated under replacing 20% nitrate-N in the nutrient solution by L-glycine and blood meal amino acids. Seeds of the mention...

متن کامل

Effect of AtNRT2.1 transgene on HATS nitrate uptake in transgenic Nicotiana plumbaginifolia

To investigate the impact of overexpression of AtNRT2.1 transgene from Arabidopsis on nitrate uptake rate and to understand the regulation of endogenous HATS by nitrate and glutamine amino acid (Gln) in tobacco plants, wild-type and transgenic (F line) plants grown on soil for 4 weeks were transferred to hydroponic culture in a controlled-environment with a 16/8h L:D photoperiod at 24? C/20...

متن کامل

Changes of glutamine and asparagine content in cucumber seedlings in response to nitrate stress

Nitrogen fertilizer application rates in intensive agricultural systems have increased dramatically in recent years, especially in protected vegetable production systems. This excessive use of nitrogen fertilizer has resulted in soil secondary salinity, which has become a significant environmental stress for crops such as cucumber, in the protected farmlands. It is thus necessary to illuminate ...

متن کامل

Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects

Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 47 10  شماره 

صفحات  -

تاریخ انتشار 2006