Generation of internal tides in an ocean of finite depth: analytical and numerical calculations
نویسنده
چکیده
Mixing in the abyssal ocean is known to play an important role in controlling the large-scale ocean circulation. In the search for sources of mechanical energy for mixing, internal tides generated by the interaction of the barotropic tide with bottom topography (mode conversion) have been implicated. However, estimates of the rate at which barotropic tidal energy is converted into the internal wave field are quite uncertain. Here, I present analytical and numerical calculations of internal tide generation in a fluid layer of finite depth to better understand the energetics of the wave generation process. Previous theoretical models of wave generation have assumed an upper radiation boundary condition (BC) appropriate for an ocean of infinite depth. But recent observations of internal tides at significant distances from their generation region indicate that this BC is not always valid, and that reflection from the upper surface is important. I show that the presence of an upper free-surface reduces the rate at which energy is fed into the internal wave field (the power) and thus the energy available for mixing. This reduction increases with the horizontal extent of the topography (relative to the wavelength of a mode-1 internal wave). Fully nonhydrostatic, nonlinear numerical calculations are used to both test the theory and to explore more realistic parameters for which linear theories are formally invalid. As bottom topography becomes steeper, linear theory underestimates mode conversion by an increasing amount, although even at critical slope the difference is quite small (O(20%)). An important finding of this study is that for certain topographic shapes the power input into the wave field can saturate as the topography becomes supercritical. A comparison of model results with a recent finite amplitude theory suggests that even though finite depth effects may be negligible in the linear regime, they may become important when the topography is of finite amplitude. The results of process studies such as this should lead to improved estimates of mode conversion in the ocean. r 2003 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver
The depth average module of NASIR finite volume solver was applied to study the tide induced currents in Khowr-e-Musa estuary. The model computes water level variation and velocity components in horizontal plane solving depth average continuity and momentum equations considering the hydrostatic pressure distribution. The software takes into account the bed and wall geometric complexities and re...
متن کاملEnhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملNumerical and Analytical Estimates of M2 Tidal Conversion at Steep Oceanic Ridges
Numerical calculations of the rate at which energy is converted from the external to internal tides at steep oceanic ridges are compared with estimates from analytic theories. The numerical calculations are performed using a hydrostatic primitive equation ocean model that uses a generalized s-coordinate system as the vertical coordinate. The model [Regional Ocean Modeling System (ROMS)] estimat...
متن کاملGeneration of Love Wave in a Media with Temperature Dependent Properties Over a Heterogeneous Substratum
The present paper deals with the generation of Love waves in a layer of finite thickness over an initially stressed heterogeneous semi-infinite media. The rigidity and density of the layer are functions of temperature, i.e. they are temperature dependent. The lower substratum is an initially stressed medium and its rigidity and density vary linearly with the depth. The frequency relation of Lo...
متن کاملGeneralized Thermoelastic Problem of a Thick Circular Plate with Axisymmetric Heat Supply Due to Internal Heat Generation
A two dimensional generalized thermoelastic problem of a thick circular plate of finite thickness and infinite extent subjected to continuous axisymmetric heat supply and an internal heat generation is studied within the context of generalized thermoelasticity. Unified system of equations for classical coupled thermoelasticity, Lord-Shulman and Green-Lindsay theory is considered. An exact solut...
متن کامل