On Wendt's Determinant and Sophie Germain's Theorem

نویسندگان

  • David Ford
  • Vijay Jha
چکیده

Research supported by the Natural Sciences and Engineering Research Council (Canada) and Fonds pour la Formation de Chercheurs et l'Aide a la Recherche (Quebec). Some results in section 3 of this work are taken from Jha's Ph.D. thesis [Jha 1992]. After a brief review of partial results regarding Case I of Fermat’s Last Theorem, we discuss the relationship between the number of points on Fermat’s curve modulo a prime and the resultantRn of the polynomialsXn 1 and ( 1 X)n 1, called Wendt’s determinant. The investigation of a conjecture about essential prime factors of Rn (Conjecture 1.3) leads to a proof that Case I of Fermat’s Last Theorem holds for any prime exponent p > 2 such that np + 1 is prime for some integer n 500 not divisible by 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Prime Factors of Wendt's Binomial Circulant Determinant

Wendt's binomial circulant determinant, W„ , is the determinant of an m by m circulant matrix of integers, with {i, ;')th entry (i,TM.i) whenever 2 divides m but 3 does not. We explain how we found the prime factors of Wm for each even m < 200 by implementing a new method for computations in algebraic number fields that uses only modular arithmetic. As a consequence we prove that if p and q = m...

متن کامل

Mathematical Mayhem Mayhem Problems High School Problems

The readers of this article should be familiar with modular arithmetic, and may also recall Sophie Germain's identity. This article deals with an application of the identity in solving the equation 3 + 4 = 5. A word about the identity As the name says, Sophie Germain's identity was rst discovered by Sophie Germain. It reads a 4 + 4b = a + 4ab + 4b 4ab = (a + 2b) 4ab = (a + 2ab+ 2b)(a 2ab+ 2b) ....

متن کامل

Upper bounds for the prime divisors of Wendt's determinant

Let c ≥ 2 be an even integer, (3, c) = 1. The resultant Wc of the polynomials tc − 1 and (1 + t)c − 1 is known as Wendt’s determinant of order c. We prove that among the prime divisors q of Wc only those which divide 2c−1 or Lc/2 can be larger than θc/4, where θ = 2.2487338 and Ln is the nth Lucas number, except when c = 20 and q = 61. Using this estimate we derive criteria for the nonsolvabili...

متن کامل

On Wendt's determinant

Wendt’s determinant of order m is the circulant determinant Wm whose (i, j)-th entry is the binomial coefficient ( m |i−j| ) , for 1 ≤ i, j ≤ m. We give a formula for Wm, when m is even not divisible by 6, in terms of the discriminant of a polynomial Tm+1, with rational coefficients, associated to (X + 1)m+1 −Xm+1 − 1. In particular, when m = p − 1 where p is a prime ≡ −1 (mod 6), this yields a...

متن کامل

The power digraphs of safe primes

A power digraph, denoted by $G(n,k)$, is a directed graph with $Z_{n}={0,1,..., n-1}$ as the set of vertices and $L={(x,y):x^{k}equiv y~(bmod , n)}$ as the edge set, where $n$ and $k$ are any positive integers. In this paper, the structure of $G(2q+1,k)$, where $q$ is a Sophie Germain prime is investigated. The primality tests for the integers of the form $n=2q+1$ are established in terms of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1993