A global carbon assimilation system using a modified ensemble Kalman filter

نویسندگان

  • S. Zhang
  • X. Zheng
  • J. M. Chen
  • Z. Chen
  • B. Dan
  • X. Yi
  • L. Wang
  • G. Wu
چکیده

A Global Carbon Assimilation System based on the ensemble Kalman filter (GCAS-EK) is developed for assimilating atmospheric CO2 data into an ecosystem model to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribution. This assimilation approach is similar to CarbonTracker, but with several new developments, including inclusion of atmospheric CO2 concentration in state vectors, using the ensemble Kalman filter (EnKF) with 1week assimilation windows, using analysis states to iteratively estimate ensemble forecast errors, and a maximum likelihood estimation of the inflation factors of the forecast and observation errors. The proposed assimilation approach is used to estimate the terrestrial ecosystem carbon fluxes and atmospheric CO2 distributions from 2002 to 2008. The results show that this assimilation approach can effectively reduce the biases and uncertainties of the carbon fluxes simulated by the ecosystem model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of Document : CARBON CYCLE DATA ASSIMILATION USING A COUPLED ATMOSPHERE - VEGETATION MODEL AND THE LOCAL ENSEMBLE TRANSFORM KALMAN FILTER

Title of Document: CARBON CYCLE DATA ASSIMILATION USING A COUPLED ATMOSPHEREVEGETATION MODEL AND THE LOCAL ENSEMBLE TRANSFORM KALMAN FILTER Ji Sun Kang, Doctor of Philosophy, 2009 Directed By: Professor Eugenia Kalnay Department of Atmospheric and Oceanic Science We develop and test new methodologies to best estimate CO2 fluxes on the Earth’s surface by assimilating observations of atmospheric ...

متن کامل

Distance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study

To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...

متن کامل

Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques

[1] Estimated parameter distributions in groundwater models may contain significant uncertainties because of data insufficiency. Therefore, adaptive uncertainty reduction strategies are needed to continuously improve model accuracy by fusing new observations. In recent years, various ensemble Kalman filters have been introduced as viable tools for updating high-dimensional model parameters. How...

متن کامل

Assessing a local ensemble Kalman filter: perfect model experiments with the National Centers for Environmental Prediction global model

The accuracy and computational efficiency of the recently proposed local ensemble Kalman filter (LEKF) data assimilation scheme is investigated on a state-of-the-art operational numerical weather prediction model using simulated observations. The model selected for this purpose is the T62 horizontaland 28-level vertical-resolution version of the Global Forecast System (GFS) of the National Cent...

متن کامل

Information Flow in an Atmospheric Model and Data Assimilation

Title of dissertation: INFORMATION FLOW IN AN ATMOSPHERIC MODEL AND DATA ASSIMILATION Young-noh Yoon, Doctor of Philosophy, 2011 Dissertation directed by: Professor Edward Ott Department of Physics Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015