Curse of Dimensionality and k-NN

نویسنده

  • Mohammad Emtiyaz Khan
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Series Classification in Many Intrinsic Dimensions

In the context of many data mining tasks, high dimensionality was shown to be able to pose significant problems, commonly referred to as different aspects of the curse of dimensionality. In this paper, we investigate in the time-series domain one aspect of the dimensionality curse called hubness, which refers to the tendency of some instances in a data set to become hubs by being included in un...

متن کامل

Input Space Partitioning for Neural Network Learning

Neural Network (NN) is a supervised machine learning technique, which is typically employed to solve classification problems. When solving a classification problem with the conventional NN, the input data fed into the NN often consists of multiple attributes of various properties. However, training the NN with all of the available input attributes may not lead to the desirable performance consi...

متن کامل

Partition based pattern synthesis technique with efficient algorithms for nearest neighbor classification

Nearest neighbor (NN) classifier is the most popular non-parametric classifier. It is a simple classifier with no design phase and shows good performance. Due to the curse of dimensionality effect, the size of training set needed by it to achieve a given classification accuracy becomes prohibitively large when the dimensionality of the data is high. Generating artificial patterns can reduce thi...

متن کامل

Improving nearest neighbor classification with cam weighted distance

Nearest neighbor (NN) classification assumes locally constant class conditional probabilities, and suffers from bias in high dimensions with a small sample set. In this paper, we propose a novel cam weighted distance to ameliorate the curse of dimensionality. Different from the existing neighborhood-based methods which only analyze a small space emanating from the query sample, the proposed nea...

متن کامل

Overlap pattern synthesis with an efficient nearest neighbor classifier

Nearest neighbor (NN) classifier is the most popular non-parametric classifier. It is a simple classifier with no design phase and shows good performance. Important factors affecting the efficiency and performance of NN classifier are (i) memory required to store the training set, (ii) classification time required to search the nearest neighbor of a given test pattern, and (iii) due to the curs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015