Realistic Exposure Methods for Investigating the Interaction of Nanoparticles with the Lung at the Air-Liquid Interface In Vitro
نویسندگان
چکیده
In light of the increasingly abundant use of engineered nanoparticles (NPs) and the ongoing exposure to ambient ultrafine particles it is imperative that the potential for NPs to elicit adverse effects on human health is understood. In order to determine the potential harm that NPs may exert, many different in vitro systems have been used. Commonly in vitro nanotoxicology studies use NP suspensions applied directly to cell cultures. Although the use of in vitro monoculture systems to assess the effects of NPs on, for example, the lung is frequently debated, the use of suspension exposures is not realistic in relation to the exposure of NPs to humans via inhalation; the primary
منابع مشابه
In vitro genotoxicity of airborne Ni‐NP in air–liquid interface
Studies using advanced toxicological methods enabling in vitro conditions that are more realistic are currently needed for understanding the risks of pulmonary exposure to airborne nanoparticles. Owing to the carcinogenicity of certain nickel compounds, the increased production of nickel nanoparticles (Ni-NPs) raises occupational safety concerns. The aim of this study was to investigate the gen...
متن کاملHistological Evaluation of the Fetus Lung in NMRI Mice after Exposure to Iron Oxide Nanoparticles: an in vitro Study
Background and Aim: Iron oxide nanoparticles are used in fields related to nanotechnology including ecology, magnetic storage, imaging and medicinal purposes. Iron nanoparticles produce reactive oxygen species (Ros). These materials are able to cross the placenta. The aim of this study was to investigate toxic effect of iron oxide nanoparticles on fetal lung in mice. <br ...
متن کاملOptimization of an air–liquid interface exposure system for assessing toxicity of airborne nanoparticles
The use of refined toxicological methods is currently needed for characterizing the risks of airborne nanoparticles (NPs) to human health. To mimic pulmonary exposure, we have developed an air-liquid interface (ALI) exposure system for direct deposition of airborne NPs on to lung cell cultures. Compared to traditional submerged systems, this allows more realistic exposure conditions for charact...
متن کاملToxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies
The alveolar epithelium of the lung is by far the most permeable epithelial barrier of the human body. The risk for adverse effects by inhaled nanoparticles (NPs) depends on their hazard (negative action on cells and organism) and on exposure (concentration in the inhaled air and pattern of deposition in the lung). With the development of advanced in vitro models, not only in vivo, but also cel...
متن کاملبررسی تاثیر نانوذره اکسیدمنیزیم بر تغییرات مرفولوژی سلولهای پنوموسیت ریه موش صحرایی در محیط in vitro
Background: Direct observation of cell behavior is involved in vivo and ex vivo study. The aim of this study was to investigate the effect of magnesium oxide nanoparticles on isolated rat lung alveolar pneumocyte cells, after severance and determine the amount of no-effect nanoparticles. Methods: In this lab trial study, in addition to determine the viability of isolated cells with Trepan blue...
متن کامل