Intelligent Lead: A Novel HRI Sensor for Guide Robots
نویسندگان
چکیده
This paper addresses the introduction of a new Human Robot Interaction (HRI) sensor for guide robots. Guide robots for geriatric patients or the visually impaired should follow user's control command, keeping a certain desired distance allowing the user to work freely. Therefore, it is necessary to acquire control commands and a user's position on a real-time basis. We suggest a new sensor fusion system to achieve this objective and we will call this sensor the "intelligent lead". The objective of the intelligent lead is to acquire a stable distance from the user to the robot, speed-control volume and turn-control volume, even when the robot platform with the intelligent lead is shaken on uneven ground. In this paper we explain a precise Extended Kalman Filter (EKF) procedure for this. The intelligent lead physically consists of a Kinect sensor, the serial linkage attached with eight rotary encoders, and an IMU (Inertial Measurement Unit) and their measurements are fused by the EKF. A mobile robot was designed to test the performance of the proposed sensor system. After installing the intelligent lead in the mobile robot, several tests are conducted to verify that the mobile robot with the intelligent lead is capable of achieving its goal points while maintaining the appropriate distance between the robot and the user. The results show that we can use the intelligent lead proposed in this paper as a new HRI sensor joined a joystick and a distance measure in the mobile environments such as the robot and the user are moving at the same time.
منابع مشابه
A Novel Comprehensive Taxonomy of Intelligent-Based Routing Protocols in Wireless Sensor Networks
Routing in ad-hoc networks, specifically intelligent-based ones, is a highly interested research topic in recent years. Most of them are simulation-based study. Large percentages have not even mentioned some of the fundamental parameters. This strictly reduces their validity and reliability. On the other hand, there is not a comprehensive framework to classify routing algorithms in wireless sen...
متن کاملA Survey of Autonomous Human Affect Detection Methods for Social Robots Engaged in Natural HRI
In Human-Robot Interactions (HRI), robots should be socially intelligent. They should be able to respond appropriately to human affective and social cues in order to effectively engage in bi-directional communications. Social intelligence would allow a robot to relate to, understand, and interact and share information with people in real-world humancentered environments. This survey paper prese...
متن کاملA topology control algorithm for autonomous underwater robots in three-dimensional space using PSO
Recently, data collection from seabed by means of underwater wireless sensor networks (UWSN) has attracted considerable attention. Autonomous underwater vehicles (AUVs) are increasingly used as UWSNs in underwater missions. Events and environmental parameters in underwater regions have a stochastic nature. The target area must be covered by sensors to observe and report events. A ‘topology cont...
متن کاملVirtual Surface for Human-robot Interaction
As cooperation between robots and humans becomes increasingly important for new robotic applications, human-robot interaction (HRI) becomes a significant area of research. This paper presents a novel approach to HRI based on the use of a virtual surface. The presented system consists of a virtual surface and a robot manipulator capable of tactile interaction. Multimedia content of the virtual s...
متن کاملSocially intelligent robots: dimensions of human-robot interaction.
Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the ...
متن کامل