Investigation into the Driving Force Dependence of Excess Electron Transport in Duplex DNA By
نویسندگان
چکیده
Title of Dissertation: Investigation into the Driving Force Dependence of Excess Electron Transport in DNA Neil Peter Campbell Doctor of Philosophy, 2009 Dissertation Directed by: Professor Steven E. Rokita Department of Chemistry and Biochemistry The purpose of this dissertation is to investigate the driving force dependence of excess electron transport in deoxyribonucleic acid (DNA) using napthyl amines as electron donors. The ability of DNA to act as a pathway for the migration of charge was first proposed in 1963 by Elgy and Spivey. Since then, investigation of two complementary processes, hole transport and excess electron transport, have been studied. Of these processes research has focused mostly on hole transport. Hole transport has been studied for several decades. As such, the four fundamental parameters affecting the processes have been elucidated: the distance dependence has been found to be weak, G/C sequences have been found to allow for more efficient hole transport, migration from the 3’ to 5’ direction is more efficient, and a driving force dependence on the efficiency of hole transport has been found. Only recently has attention turned to the determination of the fundamental parameters affecting excess electron transport. Investigations to date have determined that there is a weak distance dependence on excess electron transport, A/T sequences allow more efficient transport, and excess electron transport is more efficient when migrating from the 5’ to 3’ end of DNA. The one parameter affecting excess electron transport that has not been investigated is the driving force dependence. To test for driving force dependence, napthyl amines were screened for their ability to initiate charge transfer by reductive electron donation using an assay based on the photoinduced reduction and subsequent scission of duplex DNA containing a 5bromo-2’-deoxyuridine (U) residue and an abasic site. Each compound had varying reducing potentials (driving forces), which allowed investigation into the driving force dependence of excess electron transport. Six compounds (1,5-diaminonapthalene, N1methyl-1,5-diaminonathalene, N1,N5-dimethyl-1,5-diaminonapthalene, N1,N1-dimethyl1,5-diaminonapthalene, N1,N1,N5-trimethyl-1,5-diaminonapthalene, N1,N1,N5,N5tetramethyl-1,5-daiminonapthalene) were screened under both aerobic and anaerobic conditions, and found to initiate charge transfer. No correlation between the reduction potential of the compounds (driving force) and the rate of strand scission was seen. Subsequently, the oligonucleotide conjugates of two of the compounds, 1,5diaminonapthalene and N1,N1,N5,N5-tetramethyl-1,5-diaminonapthalene, were prepared and studied to determine if a driving force dependence on excess electron transport exists when the compounds are covalently attached to the DNA. 1,5-diaminonapthalene and N1,N1,N5,N5-tetramethyl-1,5-diaminonapthalene were chosen as they showed the greatest difference in their reducing potentials. The conjugates showed no difference in the rate of excess electron transport, thus indicating there is not a driving force dependence on excess electron transport in DNA, at least using these compounds and in this system. Investigation into the Driving Force Dependence of Excess Electron Transport in Duplex DNA By Neil Peter Campbell Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2009 Advisory Committee: Professor Steven E. Rokita, Chair Professor Philip DeShong Professor Daniel E. Falvey Assistant Professor T. Ashton Cropp Professor Peter Kofinas © Copyright by Neil Peter Campbell 2009
منابع مشابه
Enhancing excess electron transport in DNA.
The efficiency of excess electron transport in duplex DNA can be enhanced by limiting the pathways available for migration and using a donor of moderate strength that suppresses radical recombination through selective electron transfer to distal pyrimidines rather than proximal purines.
متن کاملبررسی تغییر ساختـار بلورین (Bi2Te3)0.25 (Sb2Te3)0.75 با درصـد وزنـی Te افـزوده به وسیلـهی AFM, EBSD و XRDو ارتقای عدد شایستگی بلور
(Bi2Te3)0.25(Sb2Te3)0.75 solid solution is a p type thermoelectric compound with optimum efficiency among the (Bi2Te3)x (Sb2Te3)1-x compounds with variable x. Increment of Bi2Te3 segment in the Bi-Sb-Te system decrease in hole concentration, which result in carriers transport tuning, an increment of Seebeck coefficient and decrement of electrical and thermal conductivities. An excess of Telluri...
متن کاملCharge migration along the DNA duplex: hole versus electron transport.
Cyclometalated Ir(III) complexes tethered to 18-mer oligonucleotides through a functionalized dipyridophenazine ligand have been used to study the distance dependence profile of hole and electron transport along DNA. These DNA assemblies allow a direct comparison of hole and electron transport with a single donor coupled into the base stack. Interestingly, both processes, monitored with modifie...
متن کاملInvestigation of Peak Particle Velocity Variations during Impact Pile Driving Process
Impact pile driving is a multi-component problem which is associated to multi-directional ground vibrations. At first, vibration is transferred from the hammer to the pile and then to the common interface of pile and soil. This is then transferred to the environment and has great impact on the adjacent structures, causing disturbance to residents and also damage to the buildings. It is of high ...
متن کاملIntrinsic reactivity and driving force dependence in concerted proton-electron transfers to water illustrated by phenol oxidation.
Three experimental techniques, laser flash photolysis, redox catalysis, and stopped-flow, were used to investigate the variation of the oxidation rate constant of phenol in neat water with the driving force offered by a series of electron acceptors. Taking into account a result previously obtained with a low-driving force electron acceptor thus allowed scanning more than half an electron-volt d...
متن کامل