The Variational Kalman Smoother

نویسندگان

  • Matthew J. Beal
  • Zoubin Ghahramani
چکیده

Abstract In this note we outline the derivation of the variational Kalman smoother, in the context of Bayesian Linear Dynamical Systems. The smoother is an efficient algorithm for the E-step in the ExpectationMaximisation (EM) algorithm for linear-Gaussian state-space models. However, inference approximations are required if we hold distributions over parameters. We derive the E-step updates for the hidden states (the variational smoother), and the M-step updates for the parameter distributions. We show that inference of the hidden state is tractable for any distribution over parameters, provided the expectations of certain quantities are available, analytically or otherwise.1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid (variational/Kalman) ensemble smoother for the estimation of nonlinear high-dimensional discretizations of PDE systems

Two classes of state estimation schemes, variational (4DVar) and ensemble Kalman (EnKF), have been developed and used extensively by the weather forecasting community as tractable alternatives to the standard matrix-based Kalman update equations for the estimation of high-dimensional nonlinear systems with possibly nongaussian PDFs. Variational schemes iteratively minimize a finite-horizon cost...

متن کامل

Joint state and parameter estimation with an iterative ensemble Kalman smoother

Both ensemble filtering and variational data assimilation methods have proven useful in the joint estimation of state variables and parameters of geophysical models. Yet, their respective benefits and drawbacks in this task are distinct. An ensemble variational method, known as the iterative ensemble Kalman smoother (IEnKS) has recently been introduced. It is based on an adjoint model-free vari...

متن کامل

A Hybrid Monte-Carlo Sampling Smoother for Four Dimensional Data Assimilation

This paper constructs an ensemble-based sampling smoother for fourdimensional data assimilation using a Hybrid/Hamiltonian Monte-Carlo approach. The smoother samples efficiently from the posterior probability density of the solution at the initial time. Unlike the well-known ensemble Kalman smoother, which is optimal only in the linear Gaussian case, the proposed methodology naturally accommoda...

متن کامل

Development of a variational scheme for model inversion of multi-area model of brain. Part II: VBEM method.

In Part I and Part II of these two companion papers (henceforth called Part I and Part II), we develop and evaluate a variational Bayesian expectation maximization (VBEM) method for model inversion of our multi-area extended neural mass model (MEN). In this paper, we develop the VBEM method to estimate posterior distributions of parameters of MEN. We choose suitable prior distributions for the ...

متن کامل

The Iterative Ensemble Kalman Smoother: the Best of Both Worlds?

Data assimilation seeks a mathematically optimal compromise between outcomes of a numerical model that simulates a physical system and observations of that system. It has been successfully used for twenty years in operational meteorology to perform the best forecast, and is now being used or tested in many geoscience fields. Two main classes of methods have taken the lead. Firstly, 4D-Var is a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000