A Positivity Property of Ample Vector Bundles

نویسندگان

  • CHRISTOPHE MOUROUGANE
  • SHIGEHARU TAKAYAMA
چکیده

Using Fujita-Griffiths method of computing metrics on Hodge bundles, we show that for every semi-ample vector bundle E on a compact complex manifold, and every positive integer k, the vector bundle SE ⊗ detE has a continuous metric with Griffiths semi-positive curvature. If E is ample, the metric can be made smooth and Griffiths positive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hodge Metrics and Positivity of Direct Images

Building on Fujita-Griffiths method of computing metrics on Hodge bundles, we show that the direct image of an adjoint semi-ample line bundle by a projective submersion has a continuous metric with Griffiths semi-positive curvature. This shows that for every holomorphic semi-ample vector bundle E on a complex manifold, and every positive integer k, the vector bundle SE ⊗ detE has a continuous m...

متن کامل

Curvature of Vector Bundles Associated to Holomorphic Fibrations

Let L be a (semi)-positive line bundle over a Kähler manifold, X , fibered over a complex manifold Y . Assuming the fibers are compact and non-singular we prove that the hermitian vector bundle E whose fibers are the space of global sections to L⊗KX/Y endowed with the L-metric is (semi)-positive in the sense of Nakano. As an application we prove a partial result on a conjecture of Griffiths on ...

متن کامل

Positivity of Schur function expansions of Thom polynomials

Combining the approach to Thom polynomials via classifying spaces of singularities with the Fulton-Lazarsfeld theory of cone classes and positive polynomials for ample vector bundles, we show that the coefficients of the Schur function expansions of the Thom polynomials of stable singularities are nonnegative with positive sum.

متن کامل

Rank-2 Ample Vector Bundles on Some Smooth Rational Surfaces

Some classification results for ample vector bundles of rank 2 on Hirzebruch surfaces, and on Del Pezzo surfaces, are obtained. In particular, we classify rank-2 ample vector bundles with c2 less than 7 on Hirzebruch surfaces, and with c2 less than 4 on Del Pezzo surfaces.

متن کامل

Nakano Positivity and the L-metric on the Direct Image of an Adjoint Positive Line Bundle

We prove that the L metric on the direct image of an adjoint positive line bundle by a locally trivial submersion between projective manifolds is Nakano positive, under the assumption that the typical fiber has zero first Betti number. As a consequence, we get that the symmetric powers of an ample vector bundle tensorized by its determinant are Nakano positive, in particular Griffiths positive....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005