Tensor Products and Transferability of Semilattices

نویسندگان

  • G. GRÄTZER
  • F. WEHRUNG
چکیده

In general, the tensor product, A ⊗ B, of the lattices A and B with zero is not a lattice (it is only a join-semilattice with zero). If A ⊗ B is a capped tensor product, then A ⊗ B is a lattice (the converse is not known). In this paper, we investigate lattices A with zero enjoying the property that A ⊗ B is a capped tensor product, for every lattice B with zero; we shall call such lattices amenable. The first author introduced in 1966 the concept of a sharply transferable lattice. In 1972, H. Gaskill [5] defined, similarly, sharply transferable semilattices, and characterized them by a very effective condition (T). We prove that a finite lattice A is amenable iff it is sharply transferable as a join-semilattice. For a general lattice A with zero, we obtain the result: A is amenable iff A is locally finite and every finite sublattice of A is transferable as a join-semilattice. This yields, for example, that a finite lattice A is amenable iff A⊗F(3) is a lattice iff A satisfies (T), with respect to ∨. In particular, M3 ⊗ F(3) is not a lattice. This solves a problem raised by R. W. Quackenbush in 1985 whether the tensor product of lattices with zero is always a lattice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 05 01 43 6 v 1 [ m at h . G M ] 2 5 Ja n 20 05 TENSOR PRODUCTS OF SEMILATTICES WITH ZERO , REVISITED

Let A and B be lattices with zero. The classical tensor product, A ⊗ B, of A and B as join-semilattices with zero is a join-semilattice with zero; it is, in general, not a lattice. We define a very natural condition: A ⊗ B is capped (that is, every element is a finite union of pure tensors) under which the tensor product is always a lattice. Let Conc L denote the join-semilattice with zero of c...

متن کامل

. G M ] 2 5 Ja n 20 05 TENSOR PRODUCTS OF SEMILATTICES WITH ZERO , REVISITED

Let A and B be lattices with zero. The classical tensor product, A ⊗ B, of A and B as join-semilattices with zero is a join-semilattice with zero; it is, in general, not a lattice. We define a very natural condition: A ⊗ B is capped (that is, every element is a finite union of pure tensors) under which the tensor product is always a lattice. Let Conc L denote the join-semilattice with zero of c...

متن کامل

The Semilattice Tensor Product of Distributive Lattices

We define the tensor product A ® S for arbitrary semilattices A and B. The construction is analogous to one used in ring theory (see 14], [7], [8]) and different from one studied by A. Waterman [12], D. Mowat [9], and Z. Shmuely [10]. We show that the semilattice A <3 B is a distributive lattice whenever A and B are distributive lattices, and we investigate the relationship between the Stone sp...

متن کامل

Associativity of the Tensor Product of Semilattices

The tensor product of semilattices has been studied in [2], [3] and [5]. A survey of this work is given in [4]. Although a number of problems were settled completely in these papers, the question of the associativity of the tensor product was only partially answered. In the present paper we give a complete solution to this problem. For terminology and basic results of lattice theory and univers...

متن کامل

A Survey of Tensor Products and Related Constructions in Two Lectures

We survey tensor products of lattices with zero and related constructions focused on two topics: amenable lattices and box products. PART I. FIRST LECTURE: AMENABLE LATTICES Abstract. Let A be a finite lattice. Then A is amenable (A⊗B is a lattice, for every lattice B with zero) iff A (as a join-semilattice) is sharply transferable (whenever A has an embedding φ into IdL, the ideal lattice of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005