Different roles for the stress-activated protein kinase pathway in the regulation of trehalose metabolism in Schizosaccharomyces pombe.
نویسندگان
چکیده
The Wis1p-Sty1p mitogen-activated protein kinase cascade is a major signalling system in the fission yeast Schizosaccharomyces pombe for a wide range of stress responses. It is known that trehalose functions as a protective metabolite to counteract deleterious effects of environmental stresses. Herein it is reported that the expression of genes related to trehalose metabolism in S. pombe, ntp1(+) (neutral trehalase) and tps1(+) [trehalose-6-phosphate (T6P) synthase], is partially regulated by the Sty1p kinase under salt-induced osmotic stress and conditions of slight oxidative stress and is fully dependent on this kinase under severe oxidative stress. This control is carried out through transcription factors Atf1p/Pcr1p during osmotic stress and through Pap1p during exposure to low levels of oxidative stress. However, all three transcription factors are needed for gene expression under conditions of extreme oxidative stress. In addition, a role for Sty1p in the modulation of post-transcriptional activation of trehalase mediated by Pka1p/Sck1p kinases, as well as in the activity of T6P synthase under such stressful conditions has been demonstrated. These results reveal a novel dual action of the Wis1p-Sty1p pathway in the regulation of trehalose metabolism in fission yeast.
منابع مشابه
Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe.
Spc1, an osmotic-stress-stimulated mitogen-activated protein kinase (MAPK) homolog in the fission yeast Schizosaccharomyces pombe, is required for the induction of mitosis and survival in high-osmolarity conditions. Spc1, also known as Sty1, is activated by Wis1 MAPK kinase and inhibited by Pyp1 tyrosine phosphatase. Spc1 is most closely related to Saccharomyces cerevisiae Hog1 and mammalian p3...
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملDistinct regulatory proteins control the graded transcriptional response to increasing H(2)O(2) levels in fission yeast Schizosaccharomyces pombe.
The signaling pathways that sense adverse stimuli and communicate with the nucleus to initiate appropriate changes in gene expression are central to the cellular stress response. Herein, we have characterized the role of the Sty1 (Spc1) stress-activated mitogen-activated protein kinase pathway, and the Pap1 and Atf1 transcription factors, in regulating the response to H(2)O(2) in the fission ye...
متن کاملIdentification of Cdc37 as a novel regulator of the stress-responsive mitogen-activated protein kinase.
Eukaryotic cells utilize multiple mitogen-activated protein kinases (MAPKs) to transmit various extracellular stimuli to the nucleus. A subfamily of MAPKs that mediates environmental stress stimuli is also called stress-activated protein kinase (SAPK), which has crucial roles in cellular survival under stress conditions as well as inflammatory responses. Here we report that Cdc37, an evolutiona...
متن کاملRegulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage
Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 149 Pt 7 شماره
صفحات -
تاریخ انتشار 2003