Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli
نویسندگان
چکیده
BACKGROUND The aromatic compounds cinnamic acid (CA) and p-hydroxycinnamic acid (pHCA) are used as flavoring agents as well as precursors of chemicals. These compounds are present in plants at low concentrations, therefore, complex purification processes are usually required to extract the product. An alternative production method for these aromatic acids is based on the use of microbial strains modified by metabolic engineering. These biotechnological processes are usually based on the use of simple sugars like glucose as a raw material. However, sustainable production processes should preferably be based on the use of waste material such as lignocellulosic hydrolysates. RESULTS In this study, E. coli strains with active (W3110) and inactive phosphoenolpyruvate:sugar phosphotransferase system (PTS) (VH33) were engineered for CA and pHCA production by transforming them with plasmids expressing genes encoding phenylalanine/tyrosine ammonia lyase (PAL/TAL) enzymes from Rhodotorula glutinis or Arabidopsis thaliana as well as genes aroGfbr and tktA, encoding a feedback inhibition resistant version of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and transketolase, respectively. The generated strains were evaluated in cultures with glucose, xylose or arabinose, as well as a simulated lignocellulosic hydrolysate containing a mixture of these three sugars plus acetate. Production of CA was detected in strains expressing PAL/TAL from A. thaliana, whereas both CA and pHCA accumulated in strains expressing the enzyme from R. glutinis. These experiments identified arabinose and W3110 expressing PAL/TAL from A. thaliana, aroGfbr and tktA as the carbon source/strain combination resulting in the best CA specific productivity and titer. To improve pHCA production, a mutant with inactive pheA gene was generated, causing an 8-fold increase in the yield of this aromatic acid from the sugars in a simulated hydrolysate. CONCLUSIONS In this study the quantitative contribution of active or inactive PTS as well as expression of PAL/TAL from R. glutinis or A. thaliana were determined for production performance of CA and pHCA when growing on carbon sources derived from lignocellulosic hydrolysates. These data will be a useful resource in efforts towards the development of sustainable technologies for the production of aromatic acids.
منابع مشابه
Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes
The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproduc...
متن کاملEnhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism
Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of ...
متن کاملProduction of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates
BACKGROUND Hydroxycinnamates (HCs) are mainly produced in plants. Caffeic acid (CA), p-coumaric acid (PA), ferulic acid (FA) and sinapic acid (SA) are members of the HC family. The consumption of HC by human might prevent cardiovascular disease and some types of cancer. The solubility of HCs is increased through thioester conjugation to various compounds such as quinic acid, shikimic acid, mali...
متن کاملSuccinic acid production using metabolically engineered Escherichia coli
The prospects of peak oil, climate change and the dependency of fossil carbon have urged research and development of production methods for the manufacture of fuels and chemicals from renewable resources (biomass). To date, the primary emphasis has been placed on the replacement of oil for transportation fuels. A highly significant subset of petroleum usage is the production of chemicals, which...
متن کاملEnhanced Bioaccessibility of Crocetin Sugar Esters from Saffron in Infusions Rich in Natural Phenolic Antioxidants.
The present study aims to examine whether and to what extent the bioaccessibility of the major saffron apocarotenoids, namely crocetin sugar esters (CRTSEs), is affected by the presence of strong water-soluble antioxidants, ingredients of the herbs found in commercial tea blends with saffron. An in vitro digestion model was applied to infusions from these products to investigate the possible ch...
متن کامل