A methodology for in-situ and remote sensing of microphysical and radiative properties of contrails as they evolve into cirrus

نویسندگان

  • H. M. Jones
  • J. Haywood
  • F. Marenco
  • D. O’Sullivan
  • J. Meyer
  • R. Thorpe
  • M. W. Gallagher
  • M. Krämer
  • K. N. Bower
  • G. Rädel
  • A. Rap
  • A. Woolley
  • P. Forster
چکیده

Contrails and especially their evolution into cirruslike clouds are thought to have very important effects on local and global radiation budgets, though are generally not well represented in global climate models. Lack of contrail parameterisations is due to the limited availability of in situ contrail measurements which are difficult to obtain. Here we present a methodology for successful sampling and interpretation of contrail microphysical and radiative data using both in situ and remote sensing instrumentation on board the FAAM BAe146 UK research aircraft as part of the COntrails Spreading Into Cirrus (COSIC) study. Forecast models were utilised to determine flight regions suitable for contrail formation and sampling; regions that were both free of cloud but showed a high probability of occurrence of air mass being supersaturated with respect to ice. The FAAM research aircraft, fitted with cloud microphysics probes and remote sensing instruments, formed a distinctive spiral-shaped contrail in the predicted area by flying in an orbit over the same ground position as the wind advected the contrails to the east. Parts of these contrails were sampled during the completion of four orbits, with sampled contrail regions being between 7 and 30 min old. Lidar measurements were useful for in-flight determination of the location and spatial extent of the contrails, and also to report extinction values that agreed well with those calculated from the microphysical data. A shortwave spectrometer was also able to detect the contrails, though the signal was weak due to the dispersion and evaporation of the contrails. Post-flight the UK Met Office NAME III dispersion model was successfully used as a tool for modelling the dispersion of the persistent contrail; determining its location and age, and determining when there was interference from other measured aircraft contrails or when cirrus encroached on the area later in the flight. The persistent contrails were found to consist of small (∼ 10 μm) plate-like crystals where growth of ice crystals to larger sizes (∼ 100 μm) was typically detected when higher water vapour levels were present. Using the cloud microphysics data, extinction co-efficient values were calculated and found to be 0.01–1 km−1. The contrails formed during the flight (referred to as B587) were found to have a visible lifetime of ∼ 40 min, and limited water vapour supply was thought to have suppressed ice crystal growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ observations of contrail microphysics and implications for their radiative impact

In this study we present the microphysical characteristics of 21 jet contrail clouds sampled in situ and examine the possible effects of exhaust on natural cirrus and radiative effects of contrails. Microphysical samples were obtained with Particle Measuring Systems (PMS) 2D-C, 1D-C, and FSSP probes. About one half of the study contrails were generated by the sampling aircraft, a Cessna Citatio...

متن کامل

Global Modeling of the Contrail and Contrail Cirrus Climate Impact

conditions, their direct radiative effect is mainly determined by coverage and optical depth. The microphysical properties of contrail cirrus likely differ from those of most natural cirrus, at least during the initial stages of the contrail cirrus life cycle (Heymsfield et al. 2010). Contrails form and persist in air that is ice saturated, whereas natural cirrus usually requires high ice super...

متن کامل

ACCRI Theme 4 : Contrails and Contrail - Specific Microphysics

1 Range of conditions for formation of contrails, their persistence and evolution into cirrus. 5 2.1.2 Chemical and microphysical mechanisms that determine the evolution of emissions from the engine exit to plume dispersion.. How well are aviation-related subscale processes represented in large-scale global models? 20 2.2.4 How well have contrail microphysical and optical properties been measur...

متن کامل

On the regional climatic impact of contrails: microphysical and radiative properties of contrails and natural cirrus clouds

The impact of contrail-induced cirrus clouds on regional climate is estimated for mean atmospheric conditions of southern Germany in the months of July and October. This is done by use of a regionalized onedimensional radiative convective model (RCM). The in ̄uence of an increased ice cloud cover is studied by comparing RCM results representing climatological values with a modi®ed case. In order...

متن کامل

A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar

[1] To improve our understanding of cirrus cloud radiative impact on the current and future climate, improved knowledge of cirrus cloud microphysical properties is needed. However, long-term studies of the problem indicate that accurate cirrus cloud measurements are challenging. This is true for both, remote sensing as well as in situ sampling. This study presents a new method to remotely sense...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012