Amore accurate Mulholland-type inequality in the whole plane

نویسندگان

  • Yanru Zhong
  • Bicheng Yang
  • Qiang Chen
چکیده

*Correspondence: [email protected] 1Guangxi Colleges and Universities Key Laboratory of Intelligent Processing of Computer Image and Graphics, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China Full list of author information is available at the end of the article Abstract By introducing independent parameters, applying the weight coefficients, and Hermite-Hadamard’s inequality, we give a more accurate Mulholland-type inequality in the whole plane with a best possible constant factor. Furthermore, the equivalent forms, the reverses, a few particular cases, and the operator expressions are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a reverse Mulholland’s inequality in the whole plane

By introducing multi-parameters, applying the weight coefficients and Hermite-Hadamard's inequality, we give a reverse of the extended Mulholland inequality in the whole plane with the best possible constant factor. The equivalent forms and a few particular cases are also considered.

متن کامل

On a more accurate Hardy-Mulholland-type inequality

By using the way of weight coefficients, the technique of real analysis, and Hermite-Hadamard's inequality, a more accurate Hardy-Mulholland-type inequality with multi-parameters and a best possible constant factor is given. The equivalent forms, the reverses, the operator expressions and some particular cases are considered.

متن کامل

On a more accurate multiple Hilbert-type inequality

By using Euler-Maclaurin's summation formula and the way of real analysis, a more accurate multipleHilbert-type inequality and the equivalent form are given. We also prove that the same constantfactor in the equivalent inequalities is the best possible.

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

General Hardy-Type Inequalities with Non-conjugate Exponents

We derive whole series of new integral inequalities of the Hardy-type, with non-conjugate exponents. First, we prove and discuss two equivalent general inequa-li-ties of such type, as well as their corresponding reverse inequalities. General results are then applied to special Hardy-type kernel and power weights. Also, some estimates of weight functions and constant factors are obtained. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017